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Ot W W

Dans tout ce chapitre, n désigne un entier supérieur ou égal a 1.

1.1 LE GROUPE SYMETRIQUE

1.1.1 PREMIERES DEFINITIONS

DEFINITION 1.1.1 (Groupe symétrique). Le groupe symétrique ou groupe des per-
mutations de {1,...,n} est 'ensemble des bijections de {1,...,n}. Cet ensemble
est noté G,, et est un groupe pour la la loi de composition.

3



4 CHAPITRE 1. GROUPE SYMETRIQUE ET DETERMINANT

On utilisera parfois la notation

7= (0(11) 0(22) 0&)) '

EXEMPLE 1.1.2. La permutation

T:@ ’ g) (1.1)

est la permutation vérifiant 7(1) = 2, 7(2) = 1 et 7(3) = 3.

DEFINITION 1.1.3 (Support d’une permutation). Le support d’une permutation
o € G, est 'ensemble suppo C {1,...,n} défini par

suppo = {z e{l,...,n} : o(i) # z}
Notons qu’on a toujours o(supp o) = supp o.

EXEMPLE 1.1.4. Le support de la permutation 7 donnée par (1.1) est

suppT = {1, 2}.

PROPOSITION 1.1.5. Si 0,7 € &,, sont deux permutations a supports disjoints,
alors oT = 10, i.e. 0 et T commutent.

Démonstration. Soit ¢ € {1,...,n}. Si ¢ ¢ (suppo Usuppr7), alors o(i) = i et
7(i) = i de sorte que (o7)(i) = ¢ = (10)(i). Si i € suppo, alors i ¢ supp T car
o et T sont a supports disjoints. Puisque o (i) € suppo on a aussi o(i) ¢ supp 7.
Ainsi 7(i) =i et 7(0(i)) = (7). On obtient donc

(r0)(i) = 7(0(i)) = o (i) = o(7(i)) = (o7)(),

et on montre de méme que si i € supp 7 alors (70)(i) = (07)(7). Ceci achéve la
démonstration. O

DEFINITION 1.1.6 (Cycles). Soit r > 2. Une permutation o € &,, est appelé cycle
de longueur r s’il existe r entiers distincts 41, . .., de {1,...,n} tels que

o(iy) =19, o(ig) =iz, ..., o(i,) =1y,
et o(i) =1 si i est distinct des 7,,,. Un tel cycle sera noté
o= (i1 g - ir) . (1.2)

Le support du cycle o est {iy,...,4,}. Un cycle de longueur 2 est appelé transpo-
sition.
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REMARQUE 1.1.7. L’écriture (1.2) n’est pas unique : elle 'est & permutation cir-
culaire des facteurs iy, ..., 7 prés. En effet pour tout 2 < ¢ < k, on a

(il Qg ve- i’r‘):(iq R T PR iq—1)-

EXEMPLE 1.1.8. La permutation 7 donnée par (1.1) est une transposition, et on
a
T = (1 2) .

Sioq,...,0, sont des permutations de &,,, on notera

01-""03 =010---00.

EXEMPLE 1.1.9. La permutation (z’l Tg - 2’,,) (j1 lg - ip) est la compo-
sition o7 0 09 ol 07 = (i1 g - z'r) et oy = (j1 I - ip).
EXERCICE 1.1.10. Montrer que pour tous 7y, ..., distincts, on a

(i dx - i) = (in ix) (i dko) - (i d2) . (1.3)
Pour tout o € &,, et £ € N, on définit of € &,, par
o’ =id et o' =0ot=0'0, (>0.

Autrement dit, on a
o' =go---0a0.
¢ fois

Si £ >0, on note 0=¢ = (071)7¢, de sorte que 0 ¢ = ()7t et

olttl = gl 0, € 7. (1.4)

1.1.2 DECOMPOSITION EN PRODUITS DE CYCLES ET DE TRANS-
POSITIONS

Le résultat suivant est crucial, et permet de décomposer toute permutation en
des cycles a supports disjoints

THEOREME 1.1.11 (Décomposition en produit de cycles a supports disjoints).
Toute permutation o peut étre décomposée comme un produit de cycles a support
disjoints. Cette décomposition est unique, a ['ordre des cycles prés.

Avant de démontrer ce résultat, énongons une conséquence importante.

COROLLAIRE 1.1.12 (Décomposition en produit de transpositions). Toute permu-
tation o peut étre décomposée (de maniére non unique!) comme un produit de
transpositions.
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Démonstration du corollaire 1.1.12. D’aprés le théoréme précédent il suffit de mon-
trer que tout cycle o = (2'1 lg - Zk) s’exprime comme un produit de transpo-
sitions, ce qui découle de 'équation (1.3). Ceci conclut la démonstration. ]

EXEMPLE 1.1.13. On suppose n = 4 et on regarde le cycle 0 = (2 1 4), de sorte
que
o(l)=4, o(2)=1, 0(3)=3 et o(4) =2.

Alorsonao= (2 4)(2 1).
Avant de démontrer le Théoréme 1.1.11, introduisons quelques notions. Si o €
S, et i€ {l,...,n}, on note
O,(i) = {o'(i) : L €N}
'orbite de i sous o. Notons que (O, (7)) C O, (7).

LEMME 1.1.14. Pour tous 0 € &, et i € {1,...,n}, la suite (c°(i))sen est pério-
dique. On note

l,(i) =inf{l eN : o'(i) =1}
la période minimale de 1 sous o.

Démonstration. Pour tout £ € Non a o*(i) € {1,...,n}. Ainsi, les n+ 1 nombres
i,0(1),...,0"(i) prennent au plus n valeurs distinctes, dont deux de ces nombres
sont égaux, et il existe £,y € {0,...,n} tels que 1 < £y et 01 (i) = o2(i). Mais
alors en appliquant o~ A cette égalité on obtient par (1.4)

i=0"(i)
ou by = ly — ¢1 > 0. On obtient ainsi par (1.4)
o0(i) = o (a"(i)) = o' (i)

donc la suite (0¢(i)) est périodique de période £y. Par conséquence £, (i) est bien
défini. ]

LEMME 1.1.15. Si 0 est un cycle et © € suppo, on a
o= (i o) - oO7@)).

Démonstration. On écrit o = (z’l e z'g) ou / est la longueur de ¢. Si i € suppo,
il existe ¢ tel que 7, = i. Mais alors

o:(i Ggr1 e dp Gy ce- iq—l),

et on a bien g1y, = 0™(1)si0 < m < Ll—qet 0™ (i) = lppigsil—qg+1 <m < L.
Par ailleurs comme les i, sont distincts et que o(i,—1) = i, = ¢ par définition de
o,on a l,(i) =, ce qui conclut la démonstration. ]
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Notons que le Lemme 1.1.14 implique que pour tous i € {1,...,n} et tout
o€, ona
O,(1) = Oy(j) pour tout j € O, (7). (1.5)

Ceci implique facilement que

JE€0,(i) <= 0,(i)=0,(y) <= i€0,)). (1.6)
Ainsi la relation ~ définie par

i~vj = O(i) = Os(j)
est une relation d’équivalence sur {1,...,n}. D’autre part, notons que
i¢suppo <=  O,(i) = {i}.
En utilisant (1.6) on en déduit alors
i€suppo <=  O,(i) C suppo. (1.7)

On peut maintenant procéder a la démonstration de la décomposition en cycles a
supports disjoints.

Démonstration du Théoréme 1.1.11. Soit ¢ € &,,. Si suppo = {1,...,n} alors
o =1id et il n’y a rien & démontrer. Sinon, on se donne i; € supp o. Alors par (1.7)
on a que O = O,(i1) est contenu dans supp o, et on a

Ol = {il,U(il), . ,0'81_1(1'1)} ou 61 = gg(il) > 1.

Si O = suppo, on s’arréte. Sinon, on choisit iy € suppo \ O; et on pose Oy =
O, (iz) et by = Ly (i3). Alors on a Oy N O = () puisque iy ¢ O;. Par récurrence, on
construit s éléments 71, ..., 7, deux a deux distincts, et des sous-ensembles

O = {in,o(in),....o" (@)}, G=10000), k=1,...,s,
tels que suppo = O U - - - U O,. On affirme alors que

o=0,-0, OU O} = (2k o(ig) - Uf’“’l(ik)) pour tout k=1,....s.
(1.8)
En effet, soit i« € {1,...,n}. Si i ¢ suppo, on a i ¢ O pour tout k, donc
oi(i) = i pour tout k, de sorte que oy ---04(i) =i = o(i). Si i € suppo, il existe
un unique k € {1,...,s} tel que k € O = suppo,. Mais alors pour m # k
on ai ¢ suppo,, = O, ce qui donne o,,(i) = i pour m # k. Puisque les o,
commutent par la Proposition 1.1.5, on obtient

o1 0s(1) = ox(3).
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Or i = o‘(i},) pour un certain £ € {0,..., ¢, — 1} car i € O, donc

o(i) = o(0(ix)) = 0 (in) = on(ix)

(si £ < £ — 1, la derniére inégalité est claire; si ¢ = ¢, — 1 on utilise que
op(a%1(ig)) = i, = o' (i) = i), par définition de £}).

Il reste a démontrer 1'unicité de la décomposition. Soit o = 74 - - - 7, une autre
décomposition en cycles a supports disjoints. Soit k € {1,...,s} et i € supp og.
Alors il existe un unique m tels que i € supp 7, puisque i € suppo. On a alors

Tn(i) = 0(i) = 04 (i)

pour tout £ € N. On obtient que ¢y, (i) = {,(i) = ¢,, (i), et comme o}, et 7, sont
des cycles, on a par le Lemme 1.1.15,

o=(i o) - o 1@)
= (@ o(i) - o (1 (i )
= (2 T (1) olrm (1) = (z)) =T,

On a montré qu’il existe une application m : {1,...,k} — {1,...,¢} telle que
Or = Tmmk), k=1,...,s

En inversant les roles des oy, et des 7,,, on construit de la méme maniére une fonc-

tionk : {1,...,¢} — {1,..., s} telle que 7,,, = Ok(m) DoOUr tout m. Par construction
on a la relation k o m = id. Ceci implique ¢ = s et aussi que (11,...,7s) est un
ré-ordonnement des (oy,...,05). Ceci conclut la démonstration. O]

1.1.3 SIGNATURE

Dans toute la suite on note

P ={{i.j} - i#j}

I'ensemble des paires (non ordonnées!) de {1,...,n}. On a en particulier
_(n\ _ n(n-1)
cardP,, = (2) ==

Toute permutation o € &,, induit une application

6:P, =P, {i,j}— {o@i),c(j)}



1.1. LE GROUPE SYMETRIQUE 9

On dit qu'une paire {i,j} € P, est inversée par o si I'ordre de o(i),o(j) est
inversé par rapport a celui de 7, j. Autrement dit, la paire {i,j} € P,, est inversée

D.(fi.ih <0, o D(fingh = ZL=2

Une paire est non inversée si elle n’est pas inversée, c’est-a-dire si D, ({¢,5}) > 0.

DEFINITION 1.1.16 (Nombre d’inversions et signature d’une permutation). Le
nombre d’inversions N(o) de o est, comme son nom 'indique, le nombre de paires
non ordonnées {i,j} € P, qui sont inversées par o. La signature ¢(o) d’une
permutation o est donnée par

e(o) = (=1)NO).
On a la formule suivante pour (o).
ProproOSITION 1.1.17. Pour o € &,, on a
1 oottin= ] 2= (1.9)
{1,j}€Pn {i,j} €P, J

Démonstration. On définit £(o) par le terme de droite de (1.9). Par définition de
N(o), on voit tout de suite que le signe de £(c) est le méme que celui de (—1)N©),
En outre, le changement de variables {k, ¢} = 6({i,j}) = {o(i),0(j)} donne

H{iJ}ePn |0(j) — o(9)] B H{kz,ﬁ}ePn |k — /| B
H{i,j}ePn lj =il H{z’,j}EPn j — il

()] =

Mais comme &(c) a méme signe que (—1)V(@) on obtient &(c) = (—=1)N) = ¢(0),
ce qui conclut la démonstration. O

THEOREME 1.1.18. Pour toutes permutations o, 7 € S,,, on a

e(or) = e(o)e(T).
Autrement dit, la signature est un morphisme de groupes &, — {—1,1}.

Démonstration. Soient o, 7 € &,,. Notons que pour {i,j} € P,,, on a

o(r(4)) — o(7(2))
j Z
_o(7()) —

7(j) —

)
= D,({7(1),7(j)}) D-({i,75}).

Do-({i,5}) =
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On en déduit que

elor)= I Dorlisih)={ 11 DPo(i{ii}) II o

Le dernier produit dans le membre de droite de 1’égalité ci-dessus est (7). D’autre
part en effectuant le changement de variable {k, ¢} = 7{i, j}, on obtient

[1 Dy = [ Dotk 0}) =e(o).

{i,j}€Pn {k,l}ePy,
Finalement on a bien obtenu e(o7) = ¢(0)e(7). O

THEOREME 1.1.19 (Propriétés de la signature). La signature € : &,, — {—1,1}
vérifie les propriétés suivantes :

(1) st 0 =1id est la permutation identité, alors (o) =1;

1

(ii) si o™t est Uinverse de o, on a e(c™) =e(o)™ ' =¢(0) ;

)
(iii) si o est un cycle de longueur k, alors e(o) = (—=1)F1;
)

(iv) si 7T est une transposition, alors (1) = —1.

Démonstration. Les points (i) est clair par le Théoréme 1.1.18, puisque o(id) =
o(idoid) = o(id)? = 1 puisque €(id) € {—1,1}. Pour le point (ii), on remarque
simplement que

l=c¢(id) =¢(coo ') =¢(0)e(c™)

ce qui donne £(c7!) = g(0) L. Puisqu'un cycle de longueur k& peut s’écrire comme
un produit de k — 1 transpositions (cf. (1.3)), le point (iii) se déduit du point (iv)
facilement en utilisant le Théoréme 1.1.18.

Montrons & présent le point (iv). Soit 7 = (2 j) une transposition. On peut
supposer sans restriction de généralité que i < j, puisque 7 = (i j) = (j ).
Une paire {k, (} € P, telle que k, ¢ ¢ supp 7 est stabilisée par 7 (en effet 7(k) = k
et 7(¢) = ) de sorte qu’elle n’est pas inversée par 7. Si {k, (¢} = {3, j}, alors {k, ¢}
est inversée par 7, puisque

i<j mais 7(i)=j>i=71(j).

Il reste maintenant deux cas possibles : k =iet { # j,ouk=jet { #i. Si k=1
et £ # j, on a que 7(¢) = £. En particulier, si ¢ < ¢, alors la paire {k,(} n’est pas
inversée par 7. Sii < £ < j, elle est inversée par 7 puisqu’alors 7(¢) = ¢ < j = 7(i).
Enfin si ¢ > 7, la paire n’est pas inversée. Finalement, il y a exactement j —i — 1
paires {k, (} qui sont inversées et telles que k = i et £ # j. De méme, on montre
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qu’il y a exactement j — ¢ — 1 paires {k, ¢} qui sont inversées et telles que k = j
et ¢ # . Ainsi on a obtenu que le nombre d’inversions

N(r)=1+42(—i—1)
est impair, donc e(7) = —1. ]

Une conséquence immeédiate des propriétés précédentes est le résultat suivant,
qui peut étre utile en pratique.

COROLLAIRE 1.1.20. 8% 0 = 01 ---0, ou les o, sont des cycles a supports dis-

joints, alors

6(0) — (_1)414-‘.._%5_5

ol Uy, est la longueur du cycle o,,.
Sio =75 est un produit de s transpositions, alors e(c) = (—1)°.

La derniére inégalité nous dit que, méme si la décomposition en produit de
transpositions n’est pas unique, la parité du nombre de transpositions d’une telle
décomposition doit étre toujours la méme.

1.2 DETERMINANT

1.2.1 FORMES n-LINEAIRES ALTERNEES

Dans toute la suite, on note £ = K".

DEFINITION 1.2.1. Une application p : E™ — K est une forme n-linéaire alternée
sur F si elle vérifie les propriétés suivantes :

(1) p est linéaire en chacune de ses variables ;

(ii) pour tous vy, ...,v, € K" et tous 1 <i < j < n,
(U1, Ve Vg, ) = — (U1, Vg, gy, Uy).

On notera A"E 1’ensemble des formes n-linéaires alternées sur K”. Etant donné
v=(v,...,0,) € E" et 0 € S, on note

O-V = (Ug(l), c. ,Ua(n)).
LEMME 1.2.2. Pour des permutations 7,p € &,,, on a

(tp)-v=p-(1-v), veEE" (1.10)
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Démonstration. En effet, si (wy,...,w,) =7+ (v1,...,v,), on a pour tout i, w; =
Vri) d’oll wy-13) = vy, de sorte que

Wp(i) = Wr=1(7(p(4))) = V(rp)(i)-
Ainsi
p(T-v)=p-(wi,...,wn) = (Wp(1); -, Wpn)) = (Wrp)(1)s - - > Vrpym)) = (TP) - V,
d’ott 'on tire (1.10). O

PROPOSITION 1.2.3. Soit 1 une forme n-linéaire alternée sur K". Alors pour toute
permutation o € &, et tous vy,...,v, € K", on a

,U('Ua-(l), to UU(")) = 5(0)/1(1}1, s 7Un)-

Démonstration. Pour tout 7 € &, on note 7 - (vi,...,0,) = (Vr1), - -+, Vr(n))- Le
point (i) de la Définition 1.2.1 implique que si 7 = (z j) est une transposition
avec ¢ < j, on a
(- (v, e, 0n) = w7 (U1, VU Uy)
= p(v1, ..V, U, Uy)
= —pu(v1, ..., 0p).
Décomposons a présent o comme un produit de transpositions 7y - - - 75. Par (1.10)
on a, si v=(vy,...,v,) € (K")",
1(Vo(1)s - - s Vo)) = p(0 - V)
:M((Tl...f]—s) .V)
— i(ry (7 Tet) V)

=—p((r2Ts-1) V).
Par récurrence immédiate on obtient
w(o ) = (“1)°(v) = =(o)u(v)
puisque (o) = (—1)* par le corollaire 1.1.20. Ceci conclut la démonstration. [

REMARQUE 1.2.4. Siv = (vq,...,v,) € (K")" est tel que v; = v; avec i # j, alors
pu(v) = 0. En effet, si 7 = (z j) est la transposition qui intervertit ¢ et 7, on a
7 -v = v, donc par la proposition précédente, on obtient

p(v) = p(r-v) =—p(v)
donc p(v) =0.
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1.2.2 LE DETERMINANT COMME FORME n-LINEAIRE ALTERNEE

THEOREME—-DEFINITION 1.2.5. [] existe une unique forme n-linéaire alternée, no-
tée det et appelée déterminant, qui vaut 1 sur la base canonique de K". L’ensemble
A"(K™) est un K espace vectoriel de dimension 1 généré par det.

Démonstration. Soit v = (vq,...,v,) € (K")" et p € A,(K). On décompose
chaque v; dans la base canonique e = (e;)1<;j<, de K", en écrivant

n
V; = E Vi j€5, 1 < 7 < n.
j=1

Par multilinéarité, on obtient

p(v) =p (Z Vi g1 €jis -+ Z Uz',jn@jn)

j1=1 jnzl

= Z U1y - Unj (€515 - - -5 €5, )

1<]177]’n<n

Sil existe k, ¢ tels que ji = jg, alors p(ej,,...,e;,) = 0 par la remarque 1.2.4.
Ainsi, dans la deuxiéme somme de 1’égalité ci-dessus, seuls les termes pour lesquels
Jis- -, Jn sont deux & deux distincts peuvent étre non nuls. En notant

Qn=A{01,---,Jn) €{1,...,n}" : jp # je pour tous k # (},
on remarque qu’on a une bijection &,, — (),, donnée par
o (o(1),...0(n)).
Ainsi on obtient

#(V) = Z U17j1 T /Unajn M(ejl, ce 7€jn)

(j17-~-7jn)eQn
= Z V1,0(1) * " " Un,o(n) M(€U(1)7 s 7ea(n))
0'6671
= < Z €<U)U1,a(1) tee Un,a(n)) N(ela < 7en)7
0’6671

ou dans la derniére inéaglité on a utilisé la Proposition 1.2.3, qui implique que
p(€s(1); - - €om)) = e(o)p(er, ..., e,). Ainsi, la forme p est uniquement détermi-
née par la valeur de u(e). Définissons a présent

det(v) = Z 8(0’)1)1,0(1) e -Unp(n).

O'een
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Il est aisé de voir que det est une forme multilinéaire alternée. En effet, la linéarité
par rapport a chacune des variables est claire. Si 7 = (k: 6)7 notons que

Vko(l) = Uko(r(k)) €0 Veo(k) = Veo(r(0)

et Vjo(i) = Vio(r(i)) Si ¢ # K, £. On obtient

det(vy, ..., 00 o Ugyenn,Uy) = Z E(O)V10(1) *** Veo(k) =" Vkyo(t) ** * Un,o(n)

€6,
= Z E(O)V1,6((1)) " * " Veo(r(0)) " * * Vkor(r(k)) * * * Un,or(r(n))-
O’ng
En faisant le changement de variable & = o7, de sorte que £(6) = e(o7) = —¢(0),

on obtient

det(vi, ..., 00,0 Uy vy Uy) = — Z €(0)V1,6(m) * ** Vngm) = — det(v).

5€6G,
Ainsi det est alternée, et par ce qui préceéde tout p € A"(K") s’écrit
p=p(e)det.

Ceci achéve la démonstration. OJ

1.2.3 DETERMINANT D'UNE MATRICE

Si A= (a;;) € M,(K) est une matrice carrée de taille n, on pose
det(A) = det(v1(A),...,v,(A))
ot v;(A) € K" contient les coefficients de la j¢ colonne de A, de sorte que
vi(A) = (a1, ..., an;),...J=1,...,n.

En particulier, on a

det(A) = ) ﬁaa (1.11)

0'6671

PROPOSITION 1.2.6. Si ‘A = (a;;)1<ij<n €st la transposée de A, on a

det(*A) = Z HCLJU j) = det(A).

ceG,
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Démonstration. La premiere égalité est claire. La deuxiéme découle du change-
ment de variable k = o(j) dans le produit de (1.11), qui donne

det(4) = 3~ =(0) [T aotys = 3 (o) [Jawory.

ceS, ceS,

En faisant le changement de variable & = o~!, on obtient £(5) = (), d’ou

> el [[aro) =D @) [ [ s
k=1 k=1

O'GGn 5'6677.
ce qui acheve la démonstration. ]
PROPOSITION 1.2.7. Soit A € M,,(K) une matrice carrée. Le déterminant vérifie
les propriétés suivantes.
(i) Si deuz colonnes de A sont égales, alors det A = 0.
(i) Si deuz colonnes de A sont interverties, son déterminant change de signe.

(i) Si on multiplie par X € K une des colonnes de A, son déterminant est
multiplié par \.

(iv) Siune colonne est combinaison linéaire des autres colonnes, alors det A = 0.

REMARQUE 1.2.8. La proposition précédente reste vraie si on remplace le mot
“colonne” par “ligne”, ce qui découle de la Proposition 1.2.6.

Démonstration. Ces propriétés découlent immédiatement du fait que det est une
forme n-linéaire alternée. O

Soit £ = K™. Si u € L(FE) est un endomorphisme de F, on note u®" ’endo-
morphisme u®" : E" — E™ défini par

@n(

u vy, vn) = (w(vr), - u(vn)), v, v, € EL

THEOREME 1.2.9. Si A = (a;;)1<ij<n € M, (K) est la matrice de u dans la base
canonique de E, on a

det(u(vy), ..., u(v,)) = det(A)det(vy,...,v,), v1,...,v, € E.

Démonstration. On définit p : E™ — E™ par (v, ..., v,) — det(u(vy), ..., u(v,)).
Alors p est une forme multilinéaire alternée, ce qui découle de la linéarité de u
et du caractére multilinéaire alterné de det. Par le Théoréme-Définition 1.2.5, il
existe un scalaire A € K tel que

= Adet: E" — K.
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En appliquant ceci a (vy,...,v,) = (e1,...,€,), on obtient
pler, ... en) =det(u(er), ... ule,)) = A
Cependant on a, par définition de A,
u(ej) = (arj,...,an ), j=1,...,n.

Ceci implique immédiatement que A = det(u(ey),...,u(e,)) = det A. On a donc
obtenu p = det(A) det, ce qui conclut la démonstration. O

THEOREME 1.2.10. Soient A et B deux matrices de M,,(K). Alors
det(AB) = det(A) det(B).

Démonstration. Soient u,v les endomorphismes de F canoniquement associés a
A et B, respectivement. Alors u o v est canoniquement associé a w o v. Soient
v1,...,0, € E. On applique le Théoréme 1.2.9 a ’endomorphisme u o v, ce qui
donne

det((wowv)(vy),...,(uowv)(v,)) = det(AB) det(vy,. .., v,).

On applique maintenant le Théoréme 1.2.9 & ’endomorphisme u, ce qui donne, si
w; = v(v;) pour i = 1,...,n,

det(u(wy), ..., u(w,)) = det(A) det(wy, ..., w,).
Enfin le Théoréme 1.2.9 appliqué a ’endomorphisme v donne
det(wy, ..., w,) =det(v(vy),...,v(v,)) = det(B) det(vy, ..., v,).

En prenant v; = ¢;, on obtient det(vy,...,v,) = det(ey,...,e,), de sorte que les
trois égalités précédentes donnent

det(AB) = det((uowv)(er),...,(uowv)(e,))
= det(u(wy), ..., u(wy,))
= det(A) det(wy, ..., w,)
= det(A) det(B),
ce qu’on souhaitait démontrer. O

On déduit immeédiatement du Théoréme 1.2.10 le résultat suivant.

COROLLAIRE 1.2.11 (Invariance du déterminant par similitude). Soit P € GL,(K)
une matrice inversible et A € M,,(K). Alors

det(P~'AP) = det(A).
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Démonstration. 11 suffit d’appliquer le Théoréme 1.2.10 avec A remplacée par AP
et B remplacée par P~ O

Une deuxiéme conséquence porte sur 'inversibilité d’une matrice.

COROLLAIRE 1.2.12. Une matrice A € M, (K) est inversible si et seulement si
det A # 0.

Démonstration. Si A est inversible, alors
1 = det(I,) = det(AA™") = det(A) det(A™),

donc det A # 0. Si A n’est pas inversible, alors il existe une combinaison linéaire
non triviale de ses colonnes qui est nulle. Par la Proposition 1.2.7, on obtient
det A = 0. Ceci conclut la démonstration. m

1.2.4 DEVELOPPEMENT PAR RAPPORT AUX LIGNES ET AUX CO-

LONNES
THEOREME 1.2.13 (Développement du déterminant par rapport a une ligne ou
une colonne). Soit A = (a;;) € M, (K) une matrice. Alors pour touti=1,...,n
on a
j=1 j=1

ou A;j est le déterminant de la sous-matrice de A obtenue en retirant la i-eme
ligne et la j-eme colonne, soit

a1 o 141 airj+1 -0 Qin
a—l 1 DY a—l _1 a/—l . 1 DR a/‘—l
Aij=| """ T el (1.13)
Ai+1,1 0 Qi15-1 Qitl5+1 "0 Gitln
N N W RS | arj+1 "0 Qnn
Démonstration. On note ¢;(A) = (a;1,...,a;,) € K" la i-iéme ligne de A. En
écrivant ¢;(A) = Y77 a;je; ou (e;) est la base canonique de K", on obtient via

la linéarité de det par rapport a son i-iéme facteur,

det(A) = det(¢1(A), ..., 0, (A)) = 2”: a;;D; (1.14)
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N

ou pour tous i, j, avec D; ; = det(M; ), ou

ayri1 o A15-1 ay arj+1 0 Qin
Qi—11 " Ai—15j-1 Gi—1j5 Qi—1541 - Qi—1n
Mi,j = 0 cee 0 1 0 cee 0
Qir11 o Ait15-1 Qi+l Qi1 541 0 Gitln
Ap1 " Apj—1 Qp 5 Apj+1 " Qpn

Pour tout k£ # 4, on retire ay, ; fois la i-iéme ligne de M; ; a la k-iéme ligne de M, ;,
ce qui ne modifie pas son déterminant, de sorte que

i1 - A15-1 0 ajj+1 -0 Q1p
ai—1n 0 Gimj-1 0 Gy o Qi
D, ;= 0 s 0 1 0 cee 0
’j
Qiv1,1 - G151 0 Qitr154+1 *° Girln
an1 e Qp,j—1 0 Qp j+1 e Qpn

Aprés i — 1 échanges de lignes et j — 1 échanges de colonnes, on obtient

1 0 . ... ... . 0
0 aii e Q151 141 - Q1p
2,J . i—1,1 i—1,5—1 i—1,7+1 i—1,n
Q411 0 G151 Q41541 0 Giqin
0 Qp,1 e Qp,j—1 Qp,j4+1 e Qnon

Nous aurons besoin du résultat intermédiaire suivant.

LEMME 1.2.14. Soient B = (bi,j>1<i,j<n—1; Cly...,Cn_1 € K et

]_ Ccy e Cn—1
A O bl’,l c. bl,r'z—l
0 bn—171 e bn—l,n—l

Alors det A = det B.
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Démonstration du Lemme 1.2.14. On calcule

det A = Z E(U)aa(l),l © Qo (n),n-

UEGn

On a as)y, = 0sio(l) # 1. Sio(1) =1 alors o(j) # 1 pour tout j = 2,...,n, de
sorte que
Ug(1),1 " Go(n)n = bo(2)—1,2—1 T ba(n)—l,n—l

puisque Ag(1),1 = Q1,1 = 1, et Qij; = bifl,jfl si Z,j > 1. Dés lors

det(A) = Z e(0)bo(2)-12-1" " bo(n)-1,n1

oeG,
o(1)=1

ol la somme porte sur les permutations o vérifiant (1) = 1. Notons qu’on a une
bijection

V:{oce6, :dl)=1} 6,4, o7,
ou 0 € G,,_; est définie par

6(j)=0(+1)—-1, j=1,....,n—1.

Alors on a €(6) = ¢(0), ce qui se voit aisément en décomposant o en produit de
cycles a supports disjoints. En faisant le changement de variables & = ¥(o), on
obtient donc

n—1
det(A) = > 2(6) [ ] botss = det(B),
6eGy_1 le
ce qui acheve la démonstration du lemme. O
Le lemme donne alors
11 v G151 arj+1 - Q1p
_ itj—2 |Gi—1,1 0 Gi—145-1 Qi—154+1 " Gi—1p| _ i+j
D;j=(-1)" = (=1)"™ Ay,
Ai+1,1 0 Gi415-1 0 Qitlj+1 0 Gitln
ap1 0 Q151 1541  °° Qnn

et avec (1.14) on obtient bien la premiére égalité de (1.12). La deuxiéme égalité
se déduit immédiatement de la premiére égalité appliquée a *A. La démonstration
du Théoréme 1.2.13 est compléte. O

Nous donnons une application cruciale du résultat précédent.
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COROLLAIRE 1.2.15. Le déterminant d’une matrice triangulaire supérieure est
égal au produit de ses éléments diagonauz.

Démonstration. On montre le résultat par récurrence sur la dimension. Pour n =
1, le résultat est trivial. Soit maintenant n > 2 et

a]_’]_ PR ) a/]-’n
0
A=
0 - 0

une matrice triangulaire supérieure. En développant le déterminant par rapport
a la premiére colonne de A, on obtient

n

det(A) = Z(—l)i+1ai71Ai71.

=1

Puisque a;; = 0 pour ¢ > 2, il vient

a272 PR e a/27n
0
det(A) = al,lAl,l avec Al,l =
0 Ce 0 U

Par hypothése de récurrence, on a Ay = agg -+ ay, d'ou det(A) = ay1 -+ apy.
La récurrence est établie et le corollaire est démontré. O

1.2.5 DETERMINANTS PAR BLOCS

THEOREME 1.2.16 (Déterminant d’une matrice triangulaire supérieure par blocs).
Soientn > 1 et Ay € M, (K), k= 1,...,r des matrices avec ny + --- +n, = n.
Soit A € M,,(K) une matrice par blocs de la forme

ol les x représentent des matrices quelconques. Alors on a

det A = det(A;) - - - det(A4,).
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Démonstration. Par récurrence immédiate, il suffit de prouver le théoréme pour
r = 2, de sorte qu’on supposer que A est de la forme

(v %)
0 A
avec A; € M, (K) pour £k = 1,2 et B € M, ,,(K). Soit E = K™. On considére

I’application p; : E™ — K donnée par

,ul(v):det<A1(V) B), v =(v1,...,Up) € E™,
0 A

o A;(v) est la matrice dont la i-iéme colonne a pour coefficients ceux de v;,
pour ¢ = 1,...,n;. Alors par n-linéarité du déterminant, p; est une forme n;-
linéaire alternée sur E. Par conséquent, le Théoréme 1.2.5 implique qu’il existe
une constante A qui dépend a priori de B et de A,, telle que

p1(v) = Adet(v), v e E"™. (1.15)

En évaluant sur la base canonique e de F, on obtient

I,, B
A:ul(e):det<0 A2>’

Une récurrence immeédiate combinée au Lemme 1.2.14 donne que le déterminant
de la matrice ci-dessus coincide avec det Ay, de sorte que

A = det AQ.

On note maintenant ¢;(A) € K™ le vecteur dont les coefficients sont ceux de la
i-iéme colonne de A. En notant ¢ = (¢1(A),..., ¢y, (A)) on a Aj(c) = A; et donc
par (1.15) on obtient

1n(c) = det (“él fi ) — Adet(c) = det(Ay) det(c).

Or det(c) = det A; par définition du déterminant de Ay, ce qui conclut la démons-
tration. O

1.2.6 FORMULE DE LA COMATRICE

DEFINITION 1.2.17 (Comatrice). Pour toute matrice A € M,,(K), on note com(A)
la matrice des co-facteurs de A, c’est-a-dire la matrice dont le coefficient en place

(i,7) est (—1)"MA,;;, on A;; est défini dans (1.13).



22 CHAPITRE 1. GROUPE SYMETRIQUE ET DETERMINANT

THEOREME 1.2.18 (Formule de la comatrice). Pour toute matrice A = (a; ;) €
M, (K),
A'com(A) = det(A)1,.

En particulier si A est inversible alors

“com(A)

Al= —
det A

Démonstration. On pose B = "com(A) et on note b;; les coefficients de B, de
sorte que b;; = (—1)7T"A;;. Alors le coefficient en place (i,7) de AB est donné

par
n

R E . - E 1)V q. A
7] ? % b k)
(AB)z a; kbk:] ( 1) a; kA]lc- (116)
k=1

k=1

En particulier, si ¢ = j, le Théoréme 1.2.13 donne

(AB);; = Zn:(—l)k“ai,kAM = det(A). (1.17)

k=1

Fixons & présent i # j. On considére la matrice A = (ar.) obtenue en remplagant
la j-iéme ligne de A par la i-ieme ligne de A. Alors A a deux lignes égales, donc
det A = 0. Mais en développement le déterminant par rapport a la j-iéme ligne,

0 = det 121 = Z(—l)j+kdj7kAj7k
k=1

ol Aj,k est le déterminant de la matrice réduite de A en enlevant la j-iéme ligne
et la k-ieme colonne. Puisque la (-ieme ligne de A est la méme que la (-iéme ligne
de A pour tout £ # j, on a Aj; = A;,. D’autre part on a @, = a;, puisque
la j-iéme ligne de A coincide avec la i-iéme ligne de A. En combinant ceci avec
(1.16) on obtient, si i # j,

n n

k=1 k=1

En se rappelant de (1.17), on obtient bien A’ com(A) = det(A)L,. O
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2.1 RAPPELS

SifeZ(E)etkeN onnote fF=idsik=0et ff*=fo---0f (ktermes)
sik>1.

2.1.1 VALEURS PROPRES ET VECTEURS PROPRES

DEFINITION 2.1.1. Soit f un endomorphisme de E.

(i) Un scalaire A € K est une valeur propre de f s’il existe x € E'\ {0} tel que
f(x) = Az.
(ii) Un tel vecteur x est appelé vecteur propre de f pour la valeur propre \.

(iii) L’espace propre de f associé a la valeur propre \ est le sous-espace vectoriel
Ey=ker(f—Aid)={x € £ : f(x)=Az}.
(iv) Le spectre sp(f) de f est 'ensemble de ses valeurs propres,

sp(f)={ e K : Jz € E\ {0}, f(z) = A\z}.

geom

(v) Si A € sp(f), le nombre m7™"(X\) = dim Ey est appelé sa multiplicité algé-
brique.

Un résultat fondamental est que les espaces propres associés a des valeurs
propres distinctes sont en somme directe.

LEMME 2.1.2. Soient A\y,..., A\, des valeurs propres de f deux & deux distinctes,
et x1,...,x, des vecteurs propres associés. Alors la famille (xq, ..., x,) est libre.

Démonstration. On raisonne par récurrence sur r. Le lemme est évident vrai pour
r = 1 car tout vecteur propre est non nul. Supposons le lemme vrai pour un
r > 1, et donnons nous xy, ..., 2,1 une famille de vecteurs propres de f associés
a des valeurs propres deux a deux distinctes Ay, ..., \.r1. Montrons que la famille
(21, ...,2.41) est libre; soient ay, ..., a1 € K tels que

r+1

> ajr; =0. (2.1)
j=1

En appliquant f a I’égalité précédente, on obtient

r+1

Z )\jOéj.CL’j =0. (22>
7=1
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En multipliant (2.1) par A4 et en retranchant (2.2), on obtient

T

Z()\j - )\r+1)05jxj =0.

j=1
Par hypothése de récurrence, la famille (z1,...,z,) est libre; ainsi, puisqu’on a
Aj — Ary1 # 0 pour tout j =1,...,r on obtient oy = --- =, = 0 et (2.1) donne
a1 = 0. Il suit que (z1,...,x,41) est libre et la récurrence est établie. O]

REMARQUE 2.1.3. Le résultat précédent implique directement que le spectre de
f est de cardinal au plus n.

DEFINITION 2.1.4. Soit f un endomorphisme de E. On dit que f est diagonalisable
(resp. trigonalisable) 8'il existe une base de E constituée de vecteurs propres pour
f, i.e. dans laquelle la matrice de f est diagonale (resp. triangulaire supérieure).

Ces notions existent aussi pour les matrices.

DEFINITION 2.1.5. Soit A € M,,(K) une matrice. On dit que A est diagonalisable
(resp. trigonalisable) il existe P € GL,(K) telle que P~* AP est diagonale (resp.
triangulaire supérieure).

REMARQUE 2.1.6. Un endomorphisme f € Z(F) est diagonalisable (resp. trigo-
nalisable) si, et seulement si, sa matrice dans n’importe quelle base est diagona-
lisable (resp. trigonalisable).

PROPOSITION 2.1.7 (Critére de diagonalisation, I). Un endomorphisme f € £ (FE)
est diagonalisable si, et seulement si, on a la somme directe

FE = E\
Aesp(f)

Démonstration. Supposons f diagonalisable. Soit § = (ey,...,e,) une base de
E formée de vecteurs propres de f. Notons sp(f) = {A1,..., A}, et pour tout
j=1,...,r on pose

n;=H{1<l<n : e € By}

Alors on a n; < dim E,\j pour tout j et

n=ny+-+n <Y dimEy =dim(E), @0 E),),

j=1
ol on a utilisé le Lemme 2.1.2 pour la derniére égalité. Il suit que
E=FE\, @& - -®E,,.

Réciproquement, supposons qu’on a la somme directe précédente, et prenons [
une base adaptée a la décomposition. Alors la matrice de f est diagonale dans
cette base puisque tout vecteur de 3 appartient a un des espaces propres E,. [
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2.1.2 POLYNOME CARACTERISTIQUE

DEFINITION 2.1.8. Le polynoéme caractéristique d’'une matrice carrée A € M,,(K)
est I'application y4 : K — K définie par

xa(\) = det(Al, — A), € K.

PROPOSITION 2.1.9. Le polynéme caractéristique d’une matrice est une appli-
cation polynomiale. Plus précisément, pour toute matrice A € M, (K), il existe
ag, - .., a, € K tels que

=> @), AeK
k=0

De plus, on a les expressions
ap = (—1)"det A, a,1=—trA et a,=1.

Démonstration. Pour A = (a; ;) € M,,(K) on utilise la formule du déterminant

det(\L, = A) = > <(0) [ [ (Mjot) — aj000) -
7j=1

0'6671,

Ici &, est I'ensemble des permutations de {1,...,n} et §;; est le symbole de
Kronecker donné par 9, ; = 1 si i = j et 9, ; = 0 sinon. L’expression de droite est
manifestement polynomiale en la variable A. En écrivant y4(\) = ag+ - - - + a, A",
on obtient

= det(—A) = (—1)" det A.

D’autre part, si 0 € G,, est une permutation différente de la permutation triviale,

le produit
=11 (Ai0) — ai00i)

j=1
est un polyndéme en A de degré au plus n — 2 puisque toute permutation non
triviale contient un cycle de longueur au moins 2. Si ¢ = e est la permutation
triviale, un calcul immédiat donne

n n
H —a;;) = A" = A" Z aj; + Qe(A)
j=1 j=1
ol (). est un polynéme de degré au plus n — 2. Par conséquent on obtient que

Xa) = A=A A+ QN+ Y £(0)Pa(N).
ceSn\{e}
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Par ce qui précéde, Q.(\) + deen\{e} e(o)P,(A) est un polynéme en A de degré
au plus n — 2 et on en déduit immédiatement les expressions annoncées pour les
coeflicients a,, et a,,_1. O

COROLLAIRE 2.1.10. Si A € My(K) on a
xa(A) = A% — tr(A)X + det(A).

Le polynéme caractéristique est un invariant de similitude, comme le montre
la proposition suivante.

PROPOSITION 2.1.11. Si A € M,,(K) et P € GL,(K) on a xp-1ap = Xa-

Démonstration. En effet, le déterminant est un invariant de similitude, d’ou
det(Al, — P~'AP) = det (P~'(AL, — A)P) = det(AL, — A),

ce qui montre la proposition. ]

Ainsi, le polynome caractéristique y 4 ne dépend que de la classe de conjugaison
de A, ce qui suggére la définition suivante.

DEFINITION 2.1.12. Le polynéme caractéristique d’un endomorphisme f € Z(FE)
est le polyndme caractéristique de la matrice représentant f dans n’importe quelle

base de FE.

PROPOSITION 2.1.13. Pour tout f € ZL(E), on a X € sp(f) si, et seulement si, \
est une racine de X .

Démonstration. En effet, on a A € sp(f) si, et seulement si \id —f n’est pas
inversible ce qui équivaut a det(Aid —f) = 0 ou encore xf(A) = 0. O

DEFINITION 2.1.14. Soit f € Z(F). La multiplicité algébrique m;lg(/\) d’une
valeur propre A € sp(f) est la multiplicité de A comme racine de x, c’est-a-dire

mj;lg()\) =max {k € N : (X — \)* divise x;(X)}.
PROPOSITION 2.1.15. Pour tout f € L(E) et A € sp(f), on a
1< m?lg()\) < dim E,.

Démonstration. Soit m = dim F). On a bien siir 1 < m puisque A € sp(f). Soit
(é1,...,€en) une base de E), que I'on compléte en une base 8 de E. La matrice de
f dans la base 3 est alors de la forme

o= )
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Par conséquent on a

: (X =N, —A )
[Xid—f]g = < 0 XL,_pn — B
et il suit que

XH(X) =det[Xid —f]s = (X — A)™det(XL,_pn — B) = (X — \)™x5(X).

En particulier (X — A\)™ divise xf et donc m < mjﬁlg()\) par définition de m‘}lg()\).

]

THEOREME 2.1.16 (Critére de diagonalisabilité, 1I). Un endomorphisme f €
Z(E) est diagonalisable si, et seulement si, les deux propriétés suivantes sont
vérifiées :

(1) xy est scindé sur K ;

(i) pour toute valeur propre X € sp(f), on a m‘}lg()\) =m7" ().
Démonstration. Soit f € Z(E) et notons sp(f) = {A1,..., A} ou les \; sont
deux & deux distincts. Supposons f € Z(F) diagonalisable. Alors £ = @;:1 Ej,

par la Proposition 2.1.7. En choisissant une base 3 adaptée a cette décomposition,
la matrice [f]s est diagonale; plus précisément on a

A, 0

[fls = -
0 A,

ot my; = dim By, pour j = 1,...,7. Il suit que x; = [[;_; (X — A;)™ est scinde,

. . L I
et comme les \; sont deux & deux distincts, on a immédiatement m; = m5*(\;).

Réciproquement, supposons (i) et (ii). Alors on a
dim(Ey, @& --- @ E),) =dim Ey, +--- + dim E),
= m‘}lg()\l) + et mjclg()\r)
=n.
La premiere égalité vient du fait que les E), sont en somme directe, la deuxieme

découle du point (ii) et enfin la troisiéme résulte du point (i). Ainsi on a montré
que F = FE), &---® E),, et donc f est diagonalisable par la Proposition 2.1.7. [

DEFINITION 2.1.17 (Matrice compagnon d’un polynéme unitaire). Soit P € K[X]
un polyndéme unitaire de degré n, que l'on écrit

n—1
P=X"4 Z apX*.
k=0
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La matrice compagnon de P est la matrice

0 -+ -~ 0 —aq
1 0 --- 0 -

cpy=| o - i € M, (K).
A
O -~ 0 1 —a,_

PROPOSITION 2.1.18. Pour tout polynome P € K[X] de degré n, on a xcpy = P.

Démonstration. On a

X ... 0 ag
-1 X 0 ay
Xepy =10
: X :
0o - -1 X+4+a,1
Pour tout j = 2,...,n, on ajoute la j¢ ligne multipliée par X?~! & la premiére ;
on obtient
0 - 0 P(X)
-1 X 0 aq
Xepy=10
: . X :
0o .- -1 X+a,

En développant par rapport a la premiére ligne, il vient

-1 X --- 0
_— 0 . .0
Xepy = (D)""PX) = P(X),
: o X
0 0 -1
ce qui est bien le résultat voulu. O

2.1.3 DIAGONALISATION, TRIGONALISATION

THEOREME 2.1.19 (Critére de trigonalisabilité). Un endormorphisme f € £ (FE)
est trigonalisable sur K si, et seulement si, xy est scindé sur K.
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On rappelle qu'un polynéme P € K[X] est scindé sur K si, et seulement si, il
existe a, aq,...,a, € K tels que
n
P=a]](X - ).
k=1
Puisque tout polynéme est scindé sur C par le théoréme fondamental de I’algébre,
on obtient immédiatement le corollaire suivant.

COROLLAIRE 2.1.20. Soit E est un C-espace vectoriel de dimension finie. Alors
tout endomorphisme de E est trigonalisable.

Démonstration du Théoréeme 2.1.19. En vertu de la remarque 2.1.6, il suffit de
montrer le résultat pour les matrices. Supposons que A € M,,(K) soit trigonalisable
sur K. Alors il existe P € GL,(K) et A\j,..., A, € K tels que

/\1 *
P7'AP = ,
0 A
Ainsi on obtient que
XA = Xp-tap = det(XI, — PTAP) = (X — \))--- (X = \,)

est scindé sur K.

On montre la réciproque par récurrence sur n. Elle est claire pour n = 1.
Supposons-la vraie pour un certain n > 1, et soit A € M,,,1(K) telle que x4 est
scindé sur K. En particulier, y4 admet une racine A\;. Ainsi \; est valeur propre
de A par la Proposition 2.1.13. Soit € M,, ;1 1 (K) un vecteur propre associé, que
I'on compléte en une base 8 = (z,ea,...,e,41) de My 411(K). Si P est la matrice
de passage de la base canonique de M,;11(K) & 3, on a que P~'AP est de la

forme
Ao/
“14p_ (M
prAp= (o B)
oul € My ,(K) et B € M,,(K). En particulier on obtient
X4 = Xp-1ap = (X — A1)xB-

Comme x4 est scindé sur K, il en est de méme pour xp et par hypothése de
récurrence, il existe Q € GL,(K) telle que Q! BQ est triangulaire supérieure. En

notant @ = (é g), on a @_1 = (é Qo_l) et la matrice

rara=(y (5 5600 o)

est triangulaire supérieure. La récurrence est établie. O]
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2.2 POLYNOMES D’ENDOMORPHISMES

2.2.1 OPERATIONS SUR LES ENDOMORPHISMES

On commence par introduire la notion de polynémes d’endomorphismes. On
rappelle qu’on a les opérations suivantes pour A € K et f, g € Z(F) :

e le produit extérieur A\f € Z(F), donné par
AN)(x) =Af(z), zekE;
e la somme f + g € Z(F), donnée par
(f+9)(@) = f(z) +9(z), ze€E;
e la composition fog € Z(F), donnée par

(fog)(z)=flg(x)), weck.

Pour f € Z(F) et k € N, 'endomorphisme f* € Z(E) est défini par les relations
de récurrence

fP=idg et fffr=foff keN.

Autrement dit, pour tout kK > 1 on a

fr=foof.

k fois

Notons qu’on a
fH=rofi=foff, kiUeEN

DEFINITION 2.2.1 (Polynéme d’endomorphisme). Soit P = S5 apX* € K[X]
et f € Z(F). Alors P(f) est défini par

N

P(f) =S anft € 2(B).

k=0

On dira qu'un endomorphisme g € Z(FE) est un polynéme en f s’il existe un
polynome @ € K[X] tel que g = Q(f).

REMARQUE 2.2.2. Cette notion est en adéquation avec celle des polynémes de
matrices. En effet si f € Z(FE), P =Y, a,X* € K[X] et (3 est une base de F, on
a

[P(H)ls = P([f]p);
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ot pour toute matrice A, la matrice P(A) = >, ayAF est définie a l'aide du
produit matriciel. En effet, cela résulte de ce qu’on a

[f o gls = [f]slgls
pour tous f,g € Z(F).

Les proposition suivantes seront utiles. Leurs démonstrations sont de simples
vérifications et sont laissées en exercice.

PROPOSITION 2.2.3. Soient P,Q € K[X]|, A€ K et f € Z(E). Alors
(i) (P+Q)(f) = P()+Q(f);
(i) (PQ)(f) = P(f)eQ(f);
(iii) (AP)(f) = AP(f).
PROPOSITION 2.2.4. Soient f,g € Z(E) tels que fog= go f. Alors pour tous
P,Q € K[X] ona
P(f)oQ(g) = Q(g) © P(f).

2.2.2 LEMME DES NOYAUX

Un résultat trés utile pour la réduction des endomorphismes est le suivant.

THEOREME 2.2.5 (Lemme des noyaux). Soit f € L (E), Py,...,P. € K[X] des
polynomes deux a deux premiers entre eux et P = Py --- Py,. Alors on a

ker P(f) =ker P(f) ® --- ® ker P.(f).

Démonstration. On montre d’abord le résultat pour r = 2, le cas général s’obte-
nant par récurrence. Soient donc Py, P, € K[X] deux polyndémes premiers entre
eux et P = P;P,. On note F; = ker P;(f) pour j = 1,2 et F' = ker P(f). Remar-
quons d’abord que Fy, Fy, C F d’ou [y + Fy C F'. Par ailleurs, soient x; € I pour
J=1,2, tels que

Comme les P; sont premiers entre eux, il existe des polynomes @1, Q2 € K[X] tels
que P1Qy + P,Qy = 1, ce qui implique

(P1Q1)(f) + (PQ2)(f) = idE - (2.4)
Notons que z; € F; et donc (P1Q1)(f)(z1) = 0; ainsi (2.3) et (2.4) impliquent

0= (PQ1)(f)(x1 + 72) = 12 — (PaQ2)(f)(72) = 72.
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Ainsi 29 = 0 et 1 = 0 : on a montré que Fi et F5 sont en somme directe. Il reste
a montrer que F' C Fy + F». Pour x € F, on utilise (2.4) pour écrire

z = (PQ1)(f)(2) + (PQ2)(f)(x) = 2 + 21.

On a xy € Fy car Po(f)(z9) = (P2P1Q1)(f)(z) = 0 puisque x € F. De méme
x1 € Fi et le résultat est démontré pour r = 2.

On suppose maintenant le résultat vrai pour un certain r > 2 et on se donne
Py, ..., P,y des polynémes deux a deux premiers entre eux. On pose

plzpl et pQZPQ"‘PTJrl.

Alors P, et P, sont premiers entre eux, donc par le résultat montré pour r = 2
on obtient ker P(f) = ker(P,P;)(f) = ker Pi(f) @ ker Py(f). D’autre part, les
polynémes P, ..., P, sont deux a deux premiers entre eux, donc par hypothése
de récurrence,

ker Py(f) =ker(Py... Poy)(f) = ker Py(f) @ - - - ker Py (f).
La récurrence est établie. O]
REMARQUE 2.2.6. Soit f € Z(F) et \i,..., A\ € Kdes valeurs propres de f, deux
a deux distinctes. Alors le lemme des noyaux appliqué & P = (X —Ay) -+ - (X —\,)
permet de montrer que les espaces propres Ej , ..., ), sont en somme directe :

on a retrouvé la Proposition 2.1.2.

COROLLAIRE 2.2.7. Soit f € Z(E). Si P € K[X] est scindé a racines simples et
vérifie P(f) =0 alors f est diagonalisable.

Démonstration. Comme P est scindé & racines simples, on peut écrire
T
P=1[xX-N\)
j=1

pour des Ay, ..., A\, € K deux a deux distincts. En appliquant le lemme des noyaux
aux polynéomes X — \;, on obtient

E =ker P(f) = éker(f —\;id)
j=1

donc E est somme des sous-espaces propres de f, donc f est diagonalisable. [
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2.2.3 POLYNOME MINIMAL
Nous introduisons a présent la notion de polynéme annulateur.

DEFINITION 2.2.8 (Polynome annulateur). Soit P € K[X] et f € Z(F). On dit
que P est un polynéme annulateur de f (ou plus simplement que P annule f) si
on a

P(f) = 0.
On notera Z(f) C Z(E) 'ensemble des polynémes annulateurs de f.
REMARQUE 2.2.9 (Existence d’un polynéme annulateur). Il existe toujours un po-
lynéme annulateur non nul pour un endomorphisme f € Z(FE). En effet, Z(F) est

un espace vectoriel de dimension n? et par conséquent la famille (idg, f,- - - , f”Q)
est liée ; par suite il existe ag, ..., a,2 € K non tous nuls tels que

aoidE—|—~-—|—an2f"2 = 0.
Autrement dit, le polynéme ZZiO ap X" annule f.

PROPOSITION 2.2.10 (Propriétés de Z(f)). Soit f € L(FE). Alors

(i) Z(f) est sous-un espace vectoriel de K[X] ;

(i) pour tout P € Z(f) et tout Q € K[X]|, PQ € Z(f) — on dit que Z(f) est

un idéal ;

(iii) si P € Z(f) et A € sp(f) alors P(\) = 0.
Démonstration. Pour le point (i), on remarque que pour tout A € K et tous
P.QeZ(f),ona (AP+Q)(f)=AP(f)+Q(f) =0donc \P+ Q € Z(f). Pour
le point (ii), on remarque que (PQ)(f) = P(f) o Q(f) = 0. Enfin pour le dernier
point, on prend P = ZZ:O arX® € I(f) et X € sp(f). Si x € E vérifie f(z) = A,
avec z non nul, on a f*(z) = Az pour tout k, d’ott

d d

0=P(f)(x) = Zakfk(x) = Zak/\kx =P(\x

k=0 k=0
ce qui implique P(A\) = 0. O
Le théoréme suivant caractérise I'idéal Z(f).

THEOREME-DEFINITION 2.2.11. Soit f € Z(F). Il existe un unique polynome
unitaire py € K[X] tel que

I(f) = py - KIX] = {n;- P : PeKIX]}.

Le polynéme piy est le polynome minimal de f.
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Autrement dit, le polynéme minimal s, vérifie la propriété suivante :
Un polynome P € K[X] annule f si, et seulement si, c’est un multiple de jiy.

Démonstration. On commence par l'existence de py. On vient de voir dans la
remarque 2.2.9 que Z(f) \ {0} était non vide. Ainsi, on peut définir

m = min {deg(P) : P e Z(f)\{0}},

et on choisit un polynéme Py € Z(f) unitaire avec deg(Py) = m. Soit maintenant
P € Z(f). On effectue la division euclidienne de P par Py, en écrivant P = QFPy+R
avec deg R < m. On a alors 0 = P(f) = Q(f) o Po(f) + R(f) = R(f) puisque
Py € Z(f). Ainsi R annule f, et comme deg R < m on a nécessairement R = 0 par
définition de m. Ainsi P = QP, et on a montré que Z(f) = P, - K[X]. Montrons
a présent que Py est unique : si P, € Z(f) vérifie Z(f) = P, - K[X], alors P, est
un multiple de Fy, et réciproquement ; comme les deux polynoémes sont unitaires,
on en déduit qu’ils sont égaux. Ceci conclut la démonstration. [

PROPOSITION 2.2.12 (Critére de diagonalisabilité, III). Soit f € Z(FE). Alors les
propriétés suivantes sont équivalentes :

(i) f est diagonalisable ;
(ii) 4l existe un polynome P € K[X] scindé a racines simples qui annule f ;

(iii) py est scindé a racines simples.

Démonstration. Si f est diagonalisable, il existe une base 3, des scalaires A1, ..., \, €
K deux a deux distincts et nq,...,n, > 1 des entiers tels que
ALy, 0
[f]s = :
0 AL,

Deés lors, si P =[[;_,(X — A;), on a

P(A)L, 0

[P()ls = P(lfls) = = 0.
0 P,

Ainsi P annule f et est scindé a racines simples. Supposons maintenant qu’il existe
un polynéme P scindé a racines simples qui annule f. Alors uy divise P donc 5
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est aussi scindé a racines simples. Enfin, supposons i = H;Zl(X — ;) scindé a
racines simples. Alors p¢(f) = 0 donc le lemme des noyaux donne

E =ker ip(f) = @ ker(f — \;id) = P Ey,.
j=1 j=1

Ainsi F est somme directe des espaces propres de f, donc f est diagonalisable. On
a bien montré que (i) = (ii) = (iii) = (i). Ceci conclut la démonstration. [

On conclut ce paragraphe par une conséquence de ce critére qui est trés utile
en pratique.

LEMME 2.2.13. Soit f € Z(F) un endomorphisme diagonalisable et ' C E
un sous-espace de E qui est stable par f, i.e. f(F) C F. Alors la restriction
g = flr € Z(F) est diagonalisable.

Démonstration. Puisque f est diagonalisable, iy est scindé a racines simples.
Comme gy annule f, il annule aussi g, donc g admet un polynéme annulateur
scindé & racines simples. Par le corollaire 2.2.7, g est diagonalisable. O

2.2.4 THEOREME DE CAYLEY-HAMILTON

On termine cette section en énoncant un théoréme crucial, celui de Cayley—
Hamilton.

THEOREME 2.2.14 (Cayley-Hamilton). Pour tout f € Z(E), on a xs(f) = 0.

Ce théoréme nous dit que xy € Z(f), ce qui équivaut a dire que x est un
multiple de p¢ par le théoreme-Définition 2.2.11.

Démonstration. Soit x € E non nul : on veut montrer que xs(f)(z) = 0. On pose
v=min{k € N : (z, f(z)..., f*@)) est lice}. Alors (z, f(z),..., f' 1 (x)) est
libre, et f“(x) est combinaison linéaire des f*(z) avec 0 < k < v — 1, de sorte
qu’il existe ag, ..., a,_1 € K tels que

apT + -+ ay, 1 f @) + fY(x) = 0. (2.5)

On compléte la famille (z, ..., f*~'(x)) en une base 8 de E. En utilisant (2.5) on
obtient alors que la matrice de f dans la base 3 est de la forme

c(P) =
75 = (Y 7)
avec B € M,,_,(K) et P = X" + 3./_0 ax X*. On en déduit que

Xf=Xcw)  xB=PF-xB



2.2. POLYNOMES D’ENDOMORPHISMES 37

ou on a utilisé I'égalité xc(py = P qui provient de la Proposition 2.1.18. Notons
que (2.5) implique que P(f)(z) = 0. On en déduit que

xr(£)(@) = (Pxs)(f)(@) = (x5(f) o P()) () = x5(f)(P(f)(x)) =0,

ce qui achéve la démonstration. O

Un corollaire du théoréme de Cayley-Hamilton est que les racines de iy sont
exactement les valeurs propres de f.

COROLLAIRE 2.2.15. Soit f € Z(E). Alors A\ € K est racine de s si et seulement
si A €sp(f).

Démonstration. Puisque x¢(f) = 0, puy divise xy. Ainsi les racines de py sont
aussi des racines . Par suite les racines de ;i sont des valeurs propres de f.
Réciproquement, soit A € K une valeur propre de f. Alors ps(A\) = 0 par le
dernier point de la Proposition 2.2.10. ]

Une deuxiéme conséquence est la caractérisation suivante de la trigonalisabi-
lité.

PROPOSITION 2.2.16 (Critére de trigonalisabilité, I1). Soit f € Z(F). Alors les
trois propriétés suivantes sont équivalentes :

(i) f est trigonalisable ;
(ii) 4l existe un polynome P € K[X] scindé tel que P(f) =0;

(iii) ey est scindé.

REMARQUE 2.2.17. Cette proposition combinée au Théoréme 2.1.19 implique que
pour tout f € Z(E), ps est scindé ssi x s l'est.

Démonstration. Supposons (i), i.e. f est trigonalisable. Alors x; est scindé et
X7(f) = 0 par le théoréme de Cayley-Hamilton, donc (ii) est vérifié. Supposons
(ii) : il existe P € K[X] scindé tel que P(f) = 0. Comme s divise P, on en déduit
que pf est scindé donc (iii) est vérifié.

Il reste & montrer que (iii) implique (i). On raisonne par récurrence sur la
dimension, et on suppose le résultat vrai pour les espaces vectoriels de dimension
n — 1. Soit £ un espace de dimension n et f € Z(E) tel que ps est scindé. Alors
ft¢ a une racine A € K, qui est une valeur propre de f par le corollaire 2.2.15.
Soit x € E non nul un vecteur propre associé, que l'on compléte en une base
= (x,es,...,e,) de E. Alors [f]s est de la forme

(o 5)
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avec B € M, (K), si bien que pour tout polynéme P € K[X], la matrice P([f]3)
est de la forme
(P()\) * )
0 P(B))

Dans le cas particulier ot P = g, on a ps([flz) = [ur(f)]g = 0, ce qui implique
pr(B) = 0. Ainsi ur(g) = 0 ou g est 'endomorphisme de K"~! canoniquement
associé & B. Ainsi p, divise jif, qui est scindé; par conséquent i, 'est aussi. Par
hypothése de récurrence, on obtient que g, et donc B, sont trigonalisables. On
peut alors procéder exactement comme dans la preuve du Théoréme 2.1.19 pour
conclure que f est trigonalisable. La récurrence est établie. O

On conclut ce paragraphe avec une deuxiéme conséquence du théoréme de
Cayley-Hamilton.

PROPOSITION 2.2.18 (Polynéme minimal d’une matrice compagnon). Soit P =
ag+ -+ a, 1 X"+ X" € K[X] un polynéme unitaire. Alors
Xowp) = powp) = P.

Démonstration. Comme pc(py divise xc(py par le théoréeme de Cayley-Hamilton
et que les deux polynomes sont unitaires, il suffit de montrer que deg pc(p) = n.
Pour cela on va montrer qu’il n’existe aucun polynéme non nul de degré stricte-
ment inférieur & n qui annule C(P). En effet, soit f € Z(K") I'endomorphisme
canoniquement associé a C'(P). Soit Q) = 22:0 b X* un polynéme annulateur de f
de degré d < n. Soit e = (ey, ..., e,) la base canonique de K™. Alors f*(e;) = epy
pour tout k < n, si bien que

0=Q(f)(er) =Y buf¥ler) = bpersr.
k=0 k=0

Comme la famille (eq,...,e,) est libre, on en déduit by = 0 pour tout k, donc
() = 0. Il suit que deg py = deg pc(p) = n, ce qui conclut la démonstration. O

2.3 REDUCTION DE DUNFORD ET DE JORDAN

Dans toute la suite, si F' est un K-espace vectoriel de dimension finie, on note
A (F) I'ensemble des endomorphismes nilpotents de F', c’est-a-dire

N(F)={feZ(F) : ImeN" fm=0}.
Si f € N (F), lindice de nilpotence de f est I'entier
v=inf{m e N* : f™ =0}

Comme application de la Proposition 2.2.16, on a le résultat suivant.
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PROPOSITION 2.3.1 (Polynéme caractéristique d’un endomorphisme nilpotent).
Si feN(F), onaxy=X"F et up=X" ot v est Uindice de nilpotence de f.

Démonstration. On a f™ = 0 avec m > 1, donc py divise X™. Ainsi py = XP
pour un certain p > 1. En particulier, p; est scindé, donc x; est scindé par la
remarque 2.2.17. Or sp(f) = {0} par le corollaire 2.2.15, donc 0 est la seule racine
de x;. Ceci implique y; = X4 ¥ Montrons que p; = X”. Comme X" annule f
(car f* = 0), on a que pus divise X” donc p < v. Mais py doit annuler f, donc
p = v par minimalité de v. O

2.3.1 SOUS-ESPACES CARACTERISTIQUES

DEFINITION 2.3.2. Soit f € Z(F) et A € sp(f). L'espace caractéristique C)
associé a A est défini par

Oy = ker((f - Aid)milg@)).

REMARQUE 2.3.3. Les C) sont stables par f, au sens ou f(C)) C C).

PROPOSITION 2.3.4. Pour tout A € sp(f), on a
f)\ = )\idcX + h)\, ol f,\ = f’cA et hy € JV(CA)

Démonstration. On pose hy = f\— Aidg,. Alors f\ = Aid¢, + hy. Soit x € C\. En

notant m = m;lg (M), on a, puisque C) est préservé par f — \idg,

() = (fx = Aide, )™ (2) = (f — Aidg)™(z) = 0
par définition de Cy = ker((f — Xidg)™). O

PROPOSITION 2.3.5 (Décomposition en sous-espaces caractéristiques). Soit f €
Z(FE) un endomorphisme trigonalisable. Alors

E = C.
Aesp(f)

En particulier, si K = C, alors E est la somme directe des espaces caractéristiques
associés a n’importe quel endomorphisme.
Démonstration. Comme f est trigonalisable, son polynéme caractéristique

T

s =TT =x)m

j=1
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est scindé. Ici les A\; sont distincts et m; = m*}lg(kj). Le théoréeme de Cayley—

Hamilton (Théoréme 2.2.14) nous dit que

E = ker x4 (f).

Par ailleurs, le lemme des noyaux (Théoréme 2.2.5) donne
ker x;(f) = @D ker((f — A;id)™).
j=1

Avec les deux derniéres inégalités on obtient £ = @;:1 C),, ce qu'on voulait
démontrer. [

PROPOSITION 2.3.6 (Propriétés des sous-espaces caractéristiques). Soit f € Z(E)
tel que xy est scindé. Soit X € sp(f) et fx = fl|c,. On note my et vy les ordres de
A en tant que racine de x5 et de iy, respectivement. Alors

(1) dlmC',\ =My,

(ii) Cy = ker(f — Aid)"*.

Démonstration. En choisissant une base adaptée a la somme directe @ esp(f) Ch,
on voit que x5 = H/\Esp(f) X1, Puisque fy = Aid +hy avec hy nilpotente par la
Proposition 2.3.4, on a x, (X) = xp, (X — X) = (X — A\)49™m par la Proposition
2.3.1. Par conséquent, on obtient x; = H/\esp(f)(X — N4 ce qui signifie que
dim C'y = m,. Pour le deuxiéme point, on remarque que le lemme des noyaux
appliqué a pip = [T ey (X —A)"7 implique que E coincide avec la somme directe
des 6’)\ ou 5& = ker(f — Aid)"*. Or vy < m, donc 6& C C). Comme E est aussi
somme directe des C'y, on conclut que 5,\ = C). O

2.3.2 REDUCTION DE DUNFORD

THEOREME 2.3.7 (Réduction de Dunford). Soit f € Z(F) un endomorphisme
trigonalisable. Alors il existe 6 € L (E) diagonalisable et h € N (E) tels que

f=0+h e doh=ho.
De plus, le couple (6, h) est unique.

Démonstration. On proceéde par analyse-synthése. Soient ¢ et h tels que f =d+h
avec ¢ diagonalisable, h nilpotent et 6 o h = h o . Comme h et § commutent,
ona fod=(0+h)od=03o(0d+h)=27Jof, de sorte que 4 commute avec f.
Ainsi § laisse stable les sous-espaces caractéristiques de f et on peut considérer
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I = 0lc, € Z(Cy). De méme h commute avec f et on note hy = h|g,. Par la
Proposition 2.3.4, on peut écrire fy = Aid¢, + vy, de sorte que

0y = )\ich + vy — hy.

Notons que hy commute avec fy et donc avec vy = fy — Aid¢,. Par suite vy — hy
est nilpotente. En effet, si m € N* vérifie v]" = hY' =0, on a

2m
(i =)™ = (=D =0,
=0
puisqu’on a £ > m ou 2m — £ > m pour tout £ = 0,...,2m. Par la Proposition

2.3.1, on obtient
X5A(X) = XV)\*hA(X - )‘) = (X - )‘)m/\
Ainsi X est la seule valeur propre de d,. Mais §, est diagonalisable par le Lemme
2.2.13, donc (5>\ = )\idCA7 et h)\ = V)= f)\ — )\idcx
Ainsi, on a montré 'unicité : si § et h existent, alors nécessairement leurs
restrictions a C'y sont données respectivement par Aide, et fy — Aide, pour tout
A € sp(f). Autrement dit, si x =\ @\ avec z) € C), on a

Sx)= > Azx et h(z)= Y (f(z2) = Axy). (2.6)

Aesp(f) Aesp(f)

Réciproquement, on vérifie facilement en utilisant la Proposition 2.3.4 que les
endomorphismes ¢ et h définis par la formule ci-dessus vérifient les conclusions du
théoréme. O

Soit f € Z(E) tel que x est scindé. Pour tout A € sp(f), on définit I'appli-
cation 7, : £ — C) comme étant la projection sur C) parallément a AN Cy.
Autrement dit,

T E o = T

pesp(f)

pour tout ¥ = ZMESp(f) x, appartenant a E = @uesp(f) C),. Les applications my
sont appelés projecteurs spectrauzr et sont caractérisées par

immy, =C), m =, et mom, =m,omy =0 (2.7)

pour toutes valeurs propres A, pu € sp(f) telles que A # p. Avec ces notations,
I’équation (2.6) se ré-écrit

§= > Am et h=f-4 (2.8)

Aesp(f)



42 CHAPITRE 2. REDUCTION DES ENDOMORPHISMES

PROPOSITION 2.3.8. Soit f € L(E) tel que xy est scindé. Alors les projecteurs
7, A € sp(f), sont des polynomes en f.

Démonstration. On note xy = [[\cqp(p) (X — A)™. Soit A € sp(f). On note
P=(X-N™ et Q=][(X-pm
HFEX

Alors P et () sont premiers entre eux et P() annule f, si bien que le lemme des
noyaux nous donne

E = ker(PQ)(f) = ker P(f) @ ker Q(f).

D’autre part, il existe R, S € K[X] tels que PR+ QS = 1. Notons p = (QS)(f).
Montrons que p = my. D’abord, si o € ker P(f) = Cy, on a (PR)(f)(z) =0 d’ou
I'on tire

p(x) = (QS)(f)(x) = (1 = PR)(f)(z) = x.

D’autre part, si z € ker Q(f), on a p(x) = (QS)(f)(z) = 0. Ceci montre que p est
la projection sur C) parallélement a ker Q(f). Mais par le lemme des noyaux on a

ker Q(f) = P Cu,

HFEA
donc p = 7). Ceci conclut puisque p = (QS)(f) est un polynéme en f. ]

COROLLAIRE 2.3.9. Les endomorphismes 0 et h donnés par le Théoréeme 2.3.7
sont des polynomes en f.

Démonstration. C’est une conséquence directe du résultat précédent et de 'iden-

tite (2.8). 0

2.3.3 REDUCTION DES ENDOMORPHISMES NILPOTENTS

Le but de ce paragraphe est de donner une forme normale pour les endomor-
phismes nilpotents.

THEOREME 2.3.10 (Réduction des endomorphismes nilpotents). Soit f € A (E).
Alors il existe une base 5 de E et des entiers qq,...,qs € N* tels que

Jan (0)
[flg = '

o
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Ici J, € My(K) est la matrice dont tous les coefficients sont nuls, sauf ceux de la
sur-diagonale qui valent 1, soit

0 1 (0)

J, = e M,(K).
S
(0) 0

Commencons par un résultat intermédiaire.

PROPOSITION 2.3.11 (Suite des noyaux). Soit f € Z(E). Alors il existe un entier
0 < v < ntel que pour tout k > v on a

{0} = keridg Cker f C --- C ker f = ker f**! = ... = ker f*. (2.9)

Démonstration. Pour tout & € N on note F}, = ker f*. Alors F,, C Fj,, pour tout
k. Notons dy = dim Fj. La suite (dj) est une suite croissante d’entiers inférieurs
ou égaux a n, donc elle est stationnaire a partir d’un certain rang. Notons

V= 1nf{k eN : F,= Fk+1} = 1Hf{]€ eN : d, = dk+1}.

Montrons que Fy, C Fj si et seulement si k < v, ce qui impliquera (2.9). D’abord,
notons que dj # diy1 pour tout k < v par minimalité de v, ce qui implique
Fy, € Fjy1. Réciproquement, montrons que k < v implique Fy, = Fj41. On proceéde
par récurrence. D’abord, ¢’est vrai au rang v par définition de . Supposons main-
tenant que Fy, = Fj,11, et donnons-nous x € Fy,o. Ona 0 = fk+2(z) = fHH1(f(2)),
d’on f(r) € Fyyi. Mais Fjy = Fy, donc f(z) € Fy et 0 = f*(f(z)) = fF(2).
Ainsi x € Fjpyy. Ainsi Fyyo C Fjyq donc Fyyy = Fyyo. La récurrence est éta-
blie. O

Démonstration du Théoréme 2.3.10. Soit f € A (E). Nous allons montrer qu'il
existe des sous-espaces G, C Fj, k = 1,...,v tels que F, = Fp_1 ® Gy, avec
G1 = F et f|g, est injective Gy — Gj—_1 pour k > 1.

On raisonne par récurrence descendante. Pour £ = v, on se donne un supplé-
mentaire G, de F,,_; dans F,. Alors ker f NG, = NG, C F,_1NG, = {0} donc
fla, est injective. On suppose maintenant qu’on a construit G,, ..., Gy avec k > 2
tels que Gy @ Fy—y = Fy pour tout £ =k, ..., v, et flg, : G¢ — Gy est injective si
0> k. Alors f|g, est injective, puisque ker f NGy, = F1 N Gy C Fr_1 N Gy = {0}.
D’autre part, soit y € f(Gg) N Fr_o. Alors il existe x € Gy, tel que y = f(x).
Puisque y € Fy_o on ax € Fy_y donc z € Gy, N Fr_; = {0} et © = 0 ce qui
donne y = 0. Ainsi u(Gy) est en somme directe avec Fy_s. On peut donc choisir
un supplémentaire Gy_; de Fy_o dans Fj_; tel que f(Gy) C Gg_1. Ce sous-espace
vérifie bien les propriétés voulues et la récurrence est établie.
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Notons quon a E = kerf* = F, =G, & F,_1 =G, ®G,_1® F, 5. Une
récurrence immédiate donne

E=G, & &Gy,

avec u|g, @ Gy — Gp_1 injective pour 1 < k < v. Notons s, = dim Gy pour
tout k£ = 1,...,v. On se donne une base (e,1,...,€,5,) de G,. Alors la famille
fleva),-.., f(evs,) est une famille libre de G,_;. On la compléte en une base
(éy—11,---»€-1s, ,) de G,_1. Ainsi de suite, on obtient une base (ey1,...,€ks,)
de Gy, avec s > sgq1, telle que ey, ; = f(ext1,;) pour tout j =1,..., s51. Notons
que pour tout 1 < k < vetl < j < sy, lafamille By ; = (f* exy), ..., flexs), ex;)
est libre, puisque f*(ex ;) € Gr_¢ pour tout £ < k, et les Gy, sont en somme di-
recte. La famille

6 - ﬁu,l ®&---b Bl/,sy S¥ /Bu—l,sy+1 b---b By—l,sl,,1 ®---&P ﬁ1782+1 ®---D 61781

obtenue par concaténation des familles libres 5 ; pour 1 < k < vet sppq < j < sp
(avec la convention s,1 = 0), forme exactement la famille des e, ; avec 1 < k < v
et 1 < j < sg. Elle forme donc une base de E. Dans cette base, on obtient

[3,] (0)
|
0) o

Notons que J; est la matrice nulle de taille 1 et que le nombre de blocs J, de taille
k est exactement s; — Sgi1. O

REMARQUE 2.3.12. La preuve précédente montre que le nombre de blocs de taille
k dans la forme normale d’'un endomorphisme nilpotent f est donné par

2 dimker f¥ — dimker f*7! — dimker f**1.

En effet, on a obtenu que ce nombre est sp — s.1 ot s = dim G. Or Gy, est un
supplémentaire de ker f*~! dans ker f*, donc dim ker f* — dimker f*~! = 5. Par
conséquent le nombre de blocs de taille k est

Sp — Sp1 = (dimker f* — dimker f*71) — (dim ker f**' — dim ker f*).
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2.3.4 REDUCTION DE JORDAN
THEOREME 2.3.13 (Forme réduite de Jordan). Soit f € Z(E) tel que xy est

scindé. Alors il existe une base § de E des entiers qq,...,qs € N* et des scalaires
ai, ..., a5 € K tels que
ath + th (0)
[f]s =
(0) asly, + Jg,
Les blocs
A1 0 0
A1
Nag=A,+J, = 0| € M,(K)
1
0 -+ -+ 0 )\

sont appelés blocs de Jordan.

Démonstration. Le théoréme de Cayley-Hamilton et le lemme des noyaux donnent
E = @/\esp(f) C). Comme les C sont préservés par f, il suffit de montrer le
théoréme pour la restriction f\ = f|o, € Z(C)). Puisque Cy = ker(f — Aid)™
ou my est la multiplicité algébrique de f, on peut écrire f, = Aid+h, avec
hy = f—Xid € A4(C)). (On aurait pu aussi utiliser directement les Propositions
2.3.4 et 2.3.5.) Par le Théoréme 2.3.10, on a une base 3, telle que hy est une
matrice diagonale par blocs, avec des blocs de la forme J, avec ¢ € N*. Dans cette
base, la matrice de f = Aid +h, est alors diagonale par blocs, et chacun de ses
blocs est de la forme A, + J, avec ¢ € N*. Ceci conclut la démonstration. O

PROPOSITION 2.3.14 (Puissances des blocs de Jordan). Soient A € K et ¢ € N*.
Alors pour tout m € N, on a

A™ (T) A1 (ZL) Am=2 L (qrfl) )\m*(Q*l)
0 Am o (mam :
o=l e
- e
0 0 A"

Démonstration. On a
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Or, pour tout k£ € N, la matrice J ’; est la matrice dont les coefficients sont nuls, sauf
ceux de la k-iéme sur-diagonale qui valent 1. La formule annoncée s’ensuit. O]

2.4 EXPONENTIELLE DE MATRICES

2.4.1 DEFINITION DE LEXPONENTIELLE

On dit qu’une suite (Ay)ren de matrices de M,,(K) converge vers A = (a; ;) si
pour tous 1 < 4, j < n, le coefficient en place (4, j) de Ay converge vers a; ; quand
k — oo. Sur M,,(K), on définit aussi la norme triple

Il = sup{l|Az] : = €K, flof =1},

ot ||z]| = (|#1]?+- - - +]zn|?)"/? est la norme euclidienne ou hermitienne canonicue
sur K", selon que K =R ou C. Il n’est pas dur de vérifier que [||-||| est une norme
sur M,,(K), qui vérifie

ABIF < 1Al 1B, A, B € My (K).

On dit que |||-|| est une norme d’algébre. Puisque M,,(K) est de dimension finie,
toutes les normes sont équivalentes, et il existe des constantes ¢, C' > 0 telles que
fAlle < Al < CllA[le, A € Mp(K), (2.10)

ot [[Alleo = sup;¢; jen @i s]- En particulier on a A, — A dans M, (K) si et seule-
ment si ||Ax — Al — 0.

THEOREME-DEFINITION 2.4.1 (Exponentielle de matrice). Soit A € M, (K).
k pe

Alors la suite (Ay) définie par Ay = Zﬁ est convergente et converge vers
=0
une matrice que l’on note
e =expA = ZF e M, (K)
k=0

On dit que exp A est l’exponentielle de la matrice A.

Démonstration. Sip < qon a

q 4
A

4, - 4 < 3 1A
2

:p+1

Par (2.10), on obtient que pour tout (7,j), la suite (aEZ))kGN (ou ag? est le coef-

ficient en place (7, j) de Ag) est de Cauchy. Donc la suite (aE?)keN elle converge,
ce qui signifie que (A) converge. O
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Remarquons que pour A =0, on a

exp0 = lilgnZ% = limI, =1, (2.11)

2.4.2 PROPRIETES DE L’EXPONENTIELLE

PROPOSITION 2.4.2 (Exponentielle d'une somme de matrices qui commutent).
Soient A, B € M,,(K) deuz matrices qui commutent. Alors

exp(A + B) = exp(A) exp(B).

Démonstration. Puisque A et B commutent on a
k (A+ B)Z k ¢ AmBéfm AZ B™
A+ B), = - = - = =z
(A+ B Z /! Z Z m!(0 —m)! O<Z o m)

. £ pm .
Puisque AyBj = > sk 97 2p» o1 obtient

m!

A B™ LAl 1B

B —(A+BYll = | > Fll< X g
0<m, <k 0<m <k
m4-£>k m+L>k

Le terme de droite de cette inégalité est égal a

(Z 1Al ) (Z Iz ) B Z (Al znwm)ﬁ

qui tend vers exp([[|A]l) exp(|[| BIl) — exp(I|All + [ B]l) = 0 quand k& — oo. Par
suite A By — (A + B)r — 0, ce qui montre 1'égalité voulue. O

COROLLAIRE 2.4.3. Pour toute matrice A € M,,(K), la matrice exp A est inver-
sible d’inverse exp(—A).

Démonstration. En effet exp(A) exp(—A) = exp(A—A) = exp(0) = I, par (2.11).
[

PROPOSITION 2.4.4 (Exponentielle de matrices semblables). Soit A € M,,(K) et
P € GL,(K). Alors
exp(P tAP) = P lexp(A)P.
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Démonstration. En effet il suffit de remarquer que

k -1 ¢

AP A
Z =P <Z /) ) i
=0 —
et de passer a la limite £ — oco. En effet, A, — exp A donc
[P~ AP — P exp(A)Pl|| = ||| P~ (Ar — exp A)P|||
< [[IP7HINPIIAL — exp(A)]] — 0

quand k — oo. O

Un corollaire immeédiat est le suivant.

COROLLAIRE 2.4.5 (Exponentielle d'une matrice diagonalisable). Soit A € M,,(K)
une matrice diagonalisable, qu’on écrit

A = P !diag(ay,...,a,)P
avec P € GL,(K). Alors
exp(A) = P 'diag(e™, ..., e )P.

Démonstration. Si D = diag(ay, ..., q,) on a
k e k¢ koo
_ al an
> e (5 )
(=0 (=0 =0
donc exp D = diag(e®, ..., e""). La Proposition 2.4.4 permet de conclure. O

PROPOSITION 2.4.6 (Exponentielle d’une matrice nilpotente). Soit N € M, (K)
une matrice nilpotente et v l'indice de nilpotence de N. Alors

v—1
NK
exp(N) =) o

=0
Démonstration. Cela découle immédiatement du fait que N* = 0si £ > v. O]
Les trois propriétés précédentes impliquent le résultat suivant.

PROPOSITION 2.4.7. Soit A € M,,(K) telle que x 4 est scindé. On écrit A = A+ N
la décomposition de Dunford de A, avec A diagonalisable et N nilpotente. Soient
ar, ..., ap, € K les valeurs propres de A comptées avec multiplicités. Alors il existe

P € GL,(K) telle que

n—1 N[
exp(A) = P~ diag(e™, ... ,ea”)PZ —.
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Démonstration. On écrit A = P~'diag(ay, ..., a,)P. Alors les trois propositions
précédentes impliquent tour a tour

exp A = exp(A+ N) = expAexp N = P 'diag(e™,...,e*)Pexp N

_ —1 7: [e31 75 o
= P~ diag(e™,... e )PZ R
=0
ou on a utilisé que I'indice de nilpotence de N est inférieur ou égal a n. O

2.4.3 DERIVATION DANS L’ESPACE DES MATRICES

DEFINITION 2.4.8. On dit qu'une application F': R — M, (K), t — f(t), est de
classe € si pour tout (i, j) le coefficient F; ;(t) en place (i,7) de F(t) dépend de
maniere ¢ de t. Si F est de classe ¢ on note F’(t) = L F(t) la matrice dont le
coefficient en place (7, j) est Fj ;(t).

PROPOSITION 2.4.9. Soit A € M,,(K) et F(t) = exptA pour tout t € R. Alors
F:R — M, (K) est de classe €" et

d
T exp(tA) = Aexp(tA) = exp(tA)A, teR.

Démonstration. Pour tous t,h € R on a

exp((t + h)A) —exp(tA) = exp(tA) exp(hA) — exp(tA) = exp(tA)(exp(hA) —1,).

On écrit
) o hk—QAk
exp(hA) =1, =hA+h kZ; 1

d’ott l'on tire, pour |h| < 1,

exp(hA) — 1, = IAf
DD | <SS < e
k=2 ’

Il suit que

'HF(H— h) — F(t)

7=~ exp(eayal | < e | (2= - 4| o

quand A — 0. Par suite F' est dérivable de dérivée F'(t) = exp(tA)A, qui est
clairement continue en ¢. Puisque exp(tA) et A commutent, le résultat est démon-
tré. O
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2.5 APPLICATIONS

Dans ce paragraphe nous présentons deux applications des notions abordées
dans ce chapitre : le calcul des suites récurrentes linéaires et la résolution des
équations différentielles ordinaires.

2.5.1 SUITES RECURRENTES LINEAIRES

On s’intéresse aux suites définies par une relation de récurrence linéaire d’ordre
n a coefficients constants. Soient ag, ..., a,_1 € K. On cherche a trouver les suites
(ug)ken satisfaisant la relation

agUp + ++ + Gp_1Ukgn—1 + Upp, = 0, k€N (R)

Le polynéme caractéristique associé a I'équation (R) est le polynéme unitaire
P=ay+ - +a, X"+ X"

THEOREME 2.5.1. On suppose que le polynome caractéristique de (R) est scindeé,
et on note P = [];_,(X — A;)™ ot m; € N* et les \; sont deuz & deux distincts.
Alors (ug)ren satisfait la relation (R) si, et seulement si, il existe des polynomes
Q1,...,Q, avec degQ; < m; — 1 tels que

up =Y NQ;(k), keN. (2.12)
j=1

Démonstration. Soit E le K-espace vectoriel des suites (uy)gen vérifiant (R). Alors
on a un isomorphisme ¥ : £ — K" donné par u — (ug, ..., U, 1), donc dim E = n.
Soit w € F. En notant ux = (ug, . . ., Ugsin_1), ON vOit que

U =A-u,, keN,

ou A = C(P) est la matrice compagnon associée au polynéme caractéristique P
de (R). Par récurrence immédiate, on obtient

u, = A vy, keN.
Soit f € Z(K™) I'endomorphisme x — A - x canoniquement associé a A. Alors
=P =T —
j=1

Soit B = 1 ®--- D [, une base adaptée a la décomposition K" = @;Zl C),. Alors
[f]s est diagonale par blocs, et contient r blocs Ay,..., A, de tailles respectives
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my,...,m,. On peut écrire fy, = A; ichJ_ +hy,; avec hy, € A (Cy,), si bien que
Aj = \jl, + Nj avec Nj nilpotente d’indice au plus my;. Par conséquent, si k € N

on a
k mj—l

kY he kY -
A;?:(/\jlmj—i—Nj)k:Z(é) MTENE= NS <€> ATONY,

ou pour tout £ € N, (?) = () 'k(k—1)---(k— ¢+ 1) dépend de maniére po-
lynomiale de k. Par conséquent, il existe des matrices M1, ..., Mj,,, -1 € M, (K)
telles que
mj;—1
A= NN MK, k>0, (2.13)
=0

Ecrivons & présent, pour k € N,

A (0)
u, = A¥ -y = - Uuyp.

(0) A

Alors (2.13) implique immédiatement que wuy est de la forme (2.12).
Réciproquement, notons que les suites de la forme (2.12) forment un espace
vectoriel de dimension my + - -+ + m, = n. Mais on vient de voir qu’il contient
E; cet espace est donc exactement 1'espace des solutions de (R), ce qui conclut la
démonstration. O

2.5.2 EQUATIONS DIFFERENTIELLES LINEAIRES A COEFFICIENTS
CONSTANTS
Dans ce paragraphe on explique comment résoudre les équations différentielles

linéaires a coefficients constants. Etant donnés aq, . ..,a,_1 € K des constantes,
on cherche & résoudre 1'équation différentielle d’inconnue g € €™ (R, K)

n—1
S ag® () + g™ () =0, teR, (ED)
k=0

avec conditions initiales g (0) = hy, pour k =0,...,n — 1.

THEOREME 2.5.2. On suppose que le polynome caractéristique de (R) est scindeé,
et on note P = [];_,(X — A;)™ oum; € N* et les \; sont deuz & deux distincts.
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Alors les solutions de (ED) sont exactement les fonctions g € €°°(R,K) de la

forme
T

> M)

j=1
ou Q; € K[X] est un polynome de degré inférieur ou égal & m; — 1 pour tout
jg=1,...,r.
Démonstration. Soit E = €°(R,K) et D : E — FE l'opérateur de dérivation.

Alors g € E est solution de (ED) si, et seulement si, g € ker P(D). Le lemme des
noyaux nous donne

ker P(D) = @ C; avec Cj =ker(D — \;)™. (2.14)
j=1

Identifions les espaces C;. Soit ¥, : E — F défini par ¥;(g)(t) = g(t)e~"*. Alors
U, est un isomorphisme et D o W; = ¥; o (D — \;), ce qui donne

C; = 0! (ker(D™)). (2.15)

Notons que ker D™ ~ K, _1[X]. Par (2.14) et (2.15), on obtient que g € ker P(D)
si et seulement si g est de la forme

g(t) =Y e™Q;t), teR,
j=1

avec Q; € Ky, —1[X]. On a donc montré que toutes les solutions de classe €
de (ED) sont de la forme annoncée, et réciproquement. Pour conclure, il suffit
donc de montrer que les solutions de classe (R, K) de (ED) sont en fait dans
€>(R, K). Soit donc g € €™(R, K) solution de (ED). Alors g*) est ¢! pour tout
k < n, donc g™ = —agg — -+ — an_1g" Y est aussi. Donc g est de classe €.
En itérant cet argument on obtient g € €>°(R, K), donc toutes les solutions de
(ED) sont des éléments de ker P(D). Ceci conclut la démonstration. O

La solution de (ED) est en fait explicite et donnée par une exponentielle. Nous
détaillons cette autre approche, similaire a celle proposée plus haut pour les suites
récurrentes.

PROPOSITION 2.5.3. Soit g une solution de (ED). On note
g(t)=(g(t),....g" () eK", teR

Alors g(t) = exp(tA) - g(0) ou A est la matrice compagnon associée au polyndome
caractéristique de (ED).
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Démonstration. En effet, 'équation différentielle (ED) s’écrit

g'(t) = A-g(t),

ou A = C(P) est la matrice compagnon associée au polynéme caractéristique P
de (ED). Posons

h(t) = exp(tA) -g(0), teR.
Alors h'(t) = A - h(t) par la Proposition 2.4.9. Ainsi on obtient f'(¢) = 0 ou
f(t) = g(t)—h(t). Puisque £(0) = h(0) = g(0) on obtient f(¢) = 0 donc g(t) = h(t)
pour tout t € R. Ceci conclut la démonstration. O

EXERCICE 2.5.4. Retrouver le Théoréeme 2.5.2 en utilisant le théoréme précédent
et la décomposition de Dunford, dans I’esprit de la démonstration que nous avons
donnée pour le Théoréme 2.5.1.
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Dans tout le chapitre, E désigne un K-espace vectoriel qui n’est pas forcément
de dimension finie.

3.1 FORMES LINEAIRES, ESPACE DUAL

3.1.1 DEFINITIONS ET PREMIERES PROPRIETES

DEFINITION 3.1.1. Une forme linéaire sur un espace vectoriel E est une applica-
tion ¢ : £ — K qui est linéaire. L’espace dual E* de E est I'espace des formes
linéaires sur E, c'est-a-dire que £* = Z(E, K).

EXEMPLE 3.1.2. Voici quelques exemples de formes linéaires.

95
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(i) L’application ¢ : E — K donnée par ¢(z) = 0 pour tout x est une forme
linéaire (nulle).

(ii) Si A € K, Iapplication d’évaluation K[X] — K donnée par P — P(\) est
une forme linéaire.

(iii) L’application €([a,b], K) — K donnée par f fab f est une forme linéaire.
Comme K est un K-espace vectoriel de dimension 1, on a
dim £ = dim E*
si dim F < co. On notera (-,-) : E* x E'— K le crochet de dualité, défini par
(l,x)=4((x), L€ FE*, x€kFE.

Notons que pour toute forme linéaire ¢ € (K™)*, il existe un unique n-uplet
(ay,...,a,) € K tel que

) =aix1 + -+ apey, == (x1,...,2,) € K"
Plus généralement, on a la proposition suivante.

PROPOSITION 3.1.3. Supposons E de dimension finie et soit € = (e;) une base de
E. Alors, pour toute forme linéaire f € E*, il existe un unique n-uplet (a1, . .., a,) €
K" tel que

Uz) =@+ + apn, T=z161+ - +Te, € E.

Ainsi, de la méme maniére qu’un choix de base permet d’identifier £ & K", un
choix de base permet aussi d’identifier £* a K".

Démonstration. Soit £ € E*. Posons a; = {(e;) pour tout j = 1,...,n. Alors par
linéarité de ¢, on a

l(z1er + -+ + Tpey) = a1y + -+ + ap .

Ces coefficients sont uniques : si ’équation ci-dessus est vérifiée pour tout x € E,

alors on a nécessairement a; = ((e;). O
REMARQUE 3.1.4. Le n-uplet (aq,...,a,) correspond en fait aux coefficients de
la matrice de ¢ dans la base e et vers la base canonique 1 de K :

1[€]e = (Cll Gn) .

Le résultat ci-dessus revient en fait & représenter ¢ dans une certaine base e,
de E* associée a e, comme nous allons le voir au paragraphe suivant.
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3.1.2 BASE DUALE

THEOREME-DEFINITION 3.1.5 (Base duale). Soit E de dimension finie et e =
(ej) une base de E. Il existe une unique base €* = (e}) de E* telle que

62(64) = 5k’g, 1 < k),f < n.
La base e* est la base duale de e, tandis que e est la base anté-duale de e*.

Dans le théoréme ci-dessus, 0y ¢ est le symbole de Kronecker, défini par

{1 sik =1/,

Opyp = ;
k.t 0 sinon.

y

Démonstration. Si une telle base existe, alors nécessairement on a
*
ei(wier + -+ Tpe,) = T

pour tout x = zie; + -+ + xue, € E. Réciproquement, si on définit e} par la
formule ci-dessus, on vérifie aisément que (e}) est libre, donc est une base de E*
puis que dim £* = n. En effet, siona Aq,..., A\, € K tels que \jej+---+\ef =0,

J
alors en évaluant en e; on obtient A\; = 0. Ainsi (e¥) est libre, ce qui conclut la
démonstration. O

J

PROPOSITION 3.1.6. Soit e = (e;) une base de E et e* = (e}) sa base duale. Alors
on a

x = Zef(x)ei = Z(e;‘,x}ei, r e L.
i=1 i=1
De méme, on a l’égalité
(= Zf(ej)e; = Z(ﬁ, eje;, L€ R
j=1 j=1

Démonstration. Si x = rie; + -+ w,e, € E on a x; = €j(x) par définition de
e*, d’ou la premieére affirmation. En outre, si £ est la forme linéaire définie par la
somme & droite de la derniére égalité ci-dessus, on a, pour tout i,

U(e;) = Zf(ej)ej*'(ei) = ((e;)

puisque € (e;) = d;;. Par suite £ et { coincident sur la base (e;) donc elles coincident

partout. n
Soit 1 = (¢,...,£,) une base de E*. On montre de la méme maniére que pour
le Théoréme-Définition 3.1.5 'existence d’une unique base e = (ey, ..., ¢e,) de E,

appelée base anté-duale de 1, qui vérifie 1 = e*.
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3.1.3 CHANGEMENT DE BASE

On donne la formule de changement pour la matrice de changement de base
entre deux bases duales.

PROPOSITION 3.1.7. Soit E un K-espace de dimension finie et e et f deux bases
de E. On note €* et f* les bases duales de e et f. Alors on a

Pe*,f* - t(Pe,f>_1
ot Ps est la matrice de changement de base de B a 7.

Démonstration. Soit n = dim E. Onnote e = (¢;), f = (f;), e = (&) et f* = (f7).
On note aussi A = (a;j) = Pre ¢t B = (b; j) = Per ¢+. Alors la Proposition 3.1.6
donne

7= filee;.
=1

Par conséquent b; j = f(e;). La Proposition 3.1.6 donne aussi

e =S fie) ;.
j=1

Par conséquent a;; = fF (e;) et on obtient B = *A, ce qu’on voulait démontrer. [J

3.1.4 HYPERPLANS

DEFINITION 3.1.8. Soit E un K-espace vectoriel. Un hyperplan de E est par
définition le noyau d’une forme linéaire non nulle sur F.

EXEMPLE 3.1.9. Voici quelques exemples d’hyperplans.
(i) Si A € K, 'ensemble {P € K[X] : P(\) =0} des polynémes qui s’annulent
en \ est un hyperplan de K[X].
(ii) L’ensemble des fonctions continues f : [a,b] — K telles que ff f=0est un
hyperplan de €([a, 0], K).
PROPOSITION 3.1.10. Soit E un K-espace vectoriel (pas nécessairement de dimen-
sion finie). Alors les conditions suivantes sont équivalentes :
(i) H est un hyperplan de E ;
(ii) 4l existe un sous-espace ' C E de dimension 1 tel que E'= H & F.

Si, de plus, E est de dimension finie n, ces conditions sont équivalentes au fait
que dim H =n — 1.
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Démonstration. Soit H un hyperplan de E et ¢ € E* \ {0} telle que H = ker (.
Soit x € E tel que ¢(x) # 0. Alors on affirme que £ = H @ Kz. En effet, on a
bien sir H N Kz = {0} et si y € E, on peut écrire

y=z+Ax ou A={L(y)/l(x) et z=y— Az

Alors ((z) = {(y) — M(z) = 0 donc z € H. On a bien montré que F = H & Kz.
Réciproquement, supposons £ = H & F avec dimF = 1. Soit 7 : £ — F' la
projection sur F' parallelement a H, et ¢ : F' ~ K un isomorphisme (qui existe
toujours car dim F' = 1). Notons ¢ = 1 o w. Alors ¢ est une forme linéaire, non
nulle, puisque ¢(z) = ¥ (x) pour tout z € F. Enfin, montrons que ker ¢/ = H. On
a ker ¢ = ker(¢) o ). Comme 9 est injective on a ker ¢ = kerm = H.

Enfin, si E est de dimension finie, le dernier point est une conséquence immé-
diate de la proposition 3.1.3. O

COROLLAIRE 3.1.11. Deux formes linéaires ont méme noyau si et seulement si
elles sont proportionnelles.

Démonstration. Supposons que ¢,n € E* ont méme noyau H. Si H = FE, alors
¢ =mn=0. Sinon soit x ¢ H. Alors E = H & Kz par la preuve de la proposition
3.1.10 et £(x),n(z) # 0. Soit y = z + \x avec z € H et A € K. Alors on a {(y) =
M(z) = an(z) = an(y) ou a = ¢(x)/n(x), donc n et ¢ sont proportionnelles. La
réciproque est claire. ]

PROPOSITION 3.1.12. Soit & un K-espace vectoriel de dimension finie. Soit F C E
un sous-espace de E. Alors codim F' = r si et seulement si, il existe une famille

libre (01,...,¢.) de E* telle que
F = () ker;.
j=1

Démonstration. Soit F' un espace vectoriel de codimension r, i.e. dim F = n —
r. On se donne (€,,1,...,€e,) une base de F, que l'on compléte en une base
(e1,...,€,) de E. Alors x € F si, et seulement si, e5(z) = 0 pour tout j =1,...,r
si, et seulement si z € kerej pour tout j = 1,...,r. En posant {; = e} pour
j=1,...,r, onobtient F' = ﬂ;zl ker /;. Réciproquement, on se donne (¢4, ...,¢,)
une famille libre de E* et on pose F = ﬂ;zl ker/;. On compléte la famille
(¢1,...,¢.) en une base 1 = (¢y,...,¢,) de E*. Soit e = (ey,...,e,) la base anté-
duale de 1. Alors

.,
ﬂ ker (; = vect(e,41,...,€p)

J=1

donc dim F' = r. Ceci conclut la démonstration. O]
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3.1.5 ESPACE BIDUAL

L’espace bi-dual E** de E est I'espace dual de E*. Pour tout x € F, on note
ev, € E* I’évaluation au point x, définie par

evy : B* = K, £— ((z).
La proposition suivante montre qu’on peut identifier x a ev,.

PROPOSITION 3.1.13. Supposons que E est de dimension finie. Alors [’endomor-
phisme ev : B — E** donné par

ev T > evy,

est un isomorphisme.

Démonstration. Puisque les espaces ont méme dimension, il suffit de montrer que

ev est injective. Soit e; € E\ {0}. On compléte e; en une base e = (e, €,...,€,)
de E, et on note e* = (e},...,er) la base duale de e. Alors ev,,(ef) = 1. En
particulier ev,, est non nulle et on a montré que e; +— ev, est injective. Ceci
conclut. ]

3.2 ORTHOGONALITE (AU SENS DE LA DUALITE)

3.2.1 DEFINITIONS ET PROPRIETES BASIQUES

DEFINITION 3.2.1. Soit £ un K-espace vectoriel et F© C E un sous-espace. Le
dual orthogonal de F' est le sous-espace F° C E* donné par

Fe={teE* : l(x)=0,xe€ F} ={le E* : F Ckert}.

REMARQUE 3.2.2. Etant donnée ¢ € E*, le dual orthogonal de son noyau est la
droite qu’elle engendre, i.e. (ker ¢)° = K{. En effet, si n € E* vérifie ker ¢ C kern,
alors 7 = af pour un certain a € K. Réciproquement af € (ker?)° pour tout
a € K.

PROPOSITION 3.2.3 (Propriétés du dual orthogonal). Soit E un K -espace vectoriel
et F,G C FE des sous-espaces. Alors les propriétés suivantes sont vérifiés.
(i) Si E est de dimension finie alors dim F° +dim F' = E.
(ii) Si FF C G alors G° C F°.
(i) (F+G)°=F°nNG°.
(iv) F°+G° C (FNG)°, et on a linclusion réciproque si dim E < 0o.
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(v) Sous lisomorphisme de la proposition 5.1.13, on a F ~ (F°)°.

Démonstration. On admet dans un premier temps le premier point. Pour montrer
le point (ii) on remarque simplement que si ¢ € G°, alors {(z) = 0 pour tout
x € G, donc en particulier ¢(z) = 0 pour tout x € F' C G, donc ¢ € F°.

Pour le point (iii), on remarque que si £ € F°NG°, alors F' C ker{ et G C ker ¢
donc F' + G C ker/ puisque ker ¢ est un espace vectoriel, donc ¢ € (F + G)°.
L’inclusion réciproque est claire.

Montrons (iv). Soit £ = f+ g€ F°+ G°. Six € FNG on a f(z) =0 = g(z),
donc ¢(z) = 0. Ceci implique que ¢ € (F N G)°. Si E est de dimension finie, le
point (i) donne dim(F N G)° = n — dim(F N G). En outre, les points (i) et (iii)
impliquent

dim(F° 4+ G°) = dim F° + dim G° — dim(F° N G°)
=n—dimF +n—dimG — dim(F + G)°
=n— (dim F + dim G — dim(F + G))
=n—dim(F NG),
donc dim(F*° 4+ G°) = dim(F N G)°, donc ces deux espaces sont égaux puisqu’on
a 'inclusion F° + G° C (F'NG)°.
Montrons a présent (v). On a

(F)Y={neFE™ :nl)=0,leF°}~{zeE : ev,({) =0, L € F°}.

Notons F = {z € E : ev,(f) =0, £ € F°}. Alors F C F. En outre dim F' =
dim(F°)° = dim F donc F' = F. On en déduit le point (v).

Il reste & montrer (i). Soit (eq, ..., e,) une base de F', que 'on compléte en une
base (ey,...,e,) de E. Alors on affirme que
F° =vect(e},,...,er).

En effet, notons F C E* le terme de droite de I’égalité ci-dessus. On a bien sir
F C F°, puisque si j > 7 on a e}(e;) = 0 pour tout i = 1,...,7, donc ej € F*.
Réciproquement, soit ¢ € F°. Ecrivons

n
_ o
(= E a;e;
J=1

avec a; = {(e;). Puisque £ € F° on a 0 = {(e;) = a; pour tout j =1,...,r, donc
0 € vect(er,,...,er) = F. On a obtenu dim F° = dim F = n — r = n—dlmF
ce qui conclut la démonstration. O
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3.2.2 APPLICATION

Nous donnons ici une application élégante de la notion d’orthogonalité.

PROPOSITION 3.2.4. Soit X un ensemble et fi,..., f, : X — K des fonctions qui
forment une famille libre de KX (les applications de X vers K). Alors il existe des
éléments xy,...,x, € E tels que la matrice

f1(5U1) fl(iUn)

est inversible.

Démonstration. Soit & = KX I'espace des applications de X vers K. Soit I =
vect(fi,..., fn). Pour tout x € X, on note §, : F' — K ’évaluation en z qui est
la forme linéaire donnée par F' 5 f — f(z) € K. On consideére alors

szect{5373 : IEX}CF*

I’espace engendré toutes les formes 0., quand x parcourt X. Soit f € F. Notons
que si £(f) = 0 pour tout ¢ € G, alors f(x) = 0 pour tout x € X, donc f = 0. Ceci
montre que {f € F' : evy({) =0, { € G} = {0}. Mais cet espace est naturellement
identifié & G° par I'isomorphisme de la proposition 3.1.13. En particulier G° = {0}
donc G = F*. Dés lors, il existe xq,...,z, € X tels que 6 = (0, ...,0d,,) forme
une base de F*. Pour tout z € X on peut écrire

0o =Y Sa(fi)ff =D fila)f
=1 =1

ouf* = (ff,..., fr) est labase duale de f = (f1,..., f,). En particulier, la matrice
(fi(z;)) est la matrice des vecteurs de ¢ dans la base f*, donc est inversible. [

3.3 TRANSPOSITION

3.3.1 DEFINITIONS ET PREMIERES PROPRIETES

DEFINITION 3.3.1. Soient E, F' deux K-espaces vectoriels et f € Z(E,F). On
définit ’endomorphisme transposé f' : F* — E* par

fr)(x) =4(f(zx)), Le€F*, z€kE.

PROPOSITION 3.3.2. Soient E, F, G des K-espaces vectoriels, N € K, f,g € ZL(E, F),
he Z(F,G). Alors :
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O (f+a)" =f"+g";
(i) (AT =Af";

(iii) (ho /)T = fToh';

(iv) sous lidentification E ~ E* de la proposition 3.1.13, on a (f7)" = f;

(v) (idg)" =idg-.

Démonstration. Les trois premiers points sont immeédiats. Pour (iv), on vérifie
que pour / € G* et x € E* on a

((ho f)'e, )y =(t,(hof)(x)) = ({h(f(2))) = (L' (€), f(x)) = (fT (A" (0). ).
Ceci montre bien I'égalité annoncée. ]

EXEMPLE 3.3.3. Soient a < b des réels et £: R[X] — R définie par
b
oP) = / P(t)dt, P e R[X].

Soit D € Z(R[X]) défini par D(P) = P’. Alors
D'0=06,—6, o 6.(P)=P(c), ceR, PcR[X]

En effet pour tout P € R[X] on a

b
(D7¢, Py = ((,D(P)) = (, P') = / P’ = P(b) — P(a) = (8, — 8, P).

3.3.2 LIEN AVEC LA TRANSPOSITION MATRICIELLE

La proposition suivante fait le lien entre la transposée d’une matrice et la
transposée d’une application linéaire qu’elle représente.

PROPOSITION 3.3.4. Soit E un K-espace de dimension finie et 5 une base de E.
Alors pour tout endomorphisme f € L (FE), on a

(1] =115

Démonstration. On note = (eq,...,e,) et f* = (e7,...,e;). On note A = (a; ;)
la matrice [f]s, et B = (b; ;) la matrice [fT]ﬂ*. Alors on a

n

flej) = Zai,jei et fT(e)) = mee:, j=1,...,n.
=1

i=1
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Par la Proposition 3.1.6 on a

n

ai; = (€}, f(e;)) = (fT(€)),e) =Y {brach, €5) = by,

k=1
ce qui montre bien que B = 'A. ]
En conséquence du résultat précédent, on obtient la

PROPOSITION 3.3.5. Soit E un K-espace de dimension finie et f € L (E). Alors
(i) rang f = rang f ' ;
(i) Xy =xy7;
(iii) tr f =tr f1;
(iv) det f =det fT;
(v) dimker(f — MNdg) = dimker(f" — Aidg+) pour tout A € K.
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4.1 FORMES BILINEAIRES

4.1.1 DEFINITIONS

DEFINITION 4.1.1. Soit E un K-espace vectoriel. Une forme bilinéaire sur E est
une application ¢ : F x E — K qui est linéaire en chacune de ses variables,
c’est-a-dire que pour tout x € F, les applications

Y= o(r,y) ety oy, )

sont des formes linéaires. Une forme bilinéaire ¢ sur E est dite symétrique si

o(z,y) = ¢(y,z), wz,y€E.
On notera Z(F) 'espace des formes bilinéaires sur E.

DEFINITION 4.1.2. Soit E un K-espace vectoriel. Une forme bilinéaire symétrique
p: Ex E — K est dite positive, ce qu’on écrit ¢ > 0, si

o(x,x) >0, ze€k.

Une forme bilinéaire symétrique ¢ est dite définie positive si o = 0 et si pour tout
r € F,
plr,z) =0 = x=0.

Une forme bilinéaire symétrique définie positive est un produit scalaire sur FE.
Un K-espace vectoriel E muni d'un produit scalaire ¢ = (-, -) est appelé espace
préhilbertien. Si de plus E est de dimension finie, alors E est un espace euclidien.

On notera .#(E) l'espace des formes bilinéaires symétriques sur E et .7, (F)
(resp. .74+ (F)) Pespace des formes bilinéaires symétriques positives (resp. définies
positives) sur E.

REMARQUE 4.1.3. Si K = C, alors .7, (F) = {0} et %, (E) = 0.

4.1.2 MATRICE D'UNE FORME BILINEAIRE

Supposons dans ce paragraphe que E de dimension finie n. Soit e = (eq, ..., e,)
est une base de E. A toute forme bilinéaire ¢ : ' x E — K, on associe la matrice
[¢le € M,,(K) de ¢ dans la base e la matrice dont le coefficient en place (7, ) est

p(es, €j>‘
Pour x,y € F, la bilinéarité de ¢ implique

o(z,y) ="z]e - [¢le - [Y]e- (4.1)
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PROPOSITION 4.1.4. Si f est une autre base de E, on a la formule de changement
de base

ple ="P-[ple- P ot P = Pey.

Démonstration. La matrice de changement de base P = (p; ;) = Pes de e vers f
est définie par les relations

fi= Zpi,j6i> Jj=1...,n
=1

Le coefficient en place (i, j) de [¢]s est donné par

e(fi f3) = Z Zpk,ipé,j90<€k7 er),

k=1 =1
qui est exactement le coefficient en place (4, j) de 'P[p]eP. O

Observons aussi que ¢ est symétrique si sa matrice dans n’importe quelle base
est symétrique. Le sens direct est évident, et si [ple est symétrique pour une
certaine base e, alors 'identité (4.1) montre que ¢ est symétrique.

La Proposition 4.1.4 implique que rang|ple = rang[p|e pour toutes bases e, f
de E. Ceci suggere la définition suivante.

DEFINITION 4.1.5. Le rang d’une forme bilinéaire ¢ : F x E — K est définie par

rang ¢ = rang[yle

pour n’importe quelle base e.

4.1.3 FORMES QUADRATIQUES

DEFINITION 4.1.6. Une forme quadratique sur E est une application ¢ : E — K
telle que
q(x) = gp(m,x), r €L,

pour une forme bilinéaire symétrique .

On notera 2(FE) I'espace des formes quadratiques sur E.

REMARQUE 4.1.7. On peut supprimer le terme “symétrique” dans la définition ci-
dessus. En effet, si q(z) = ¢(z, x) avec ¢ une forme bilinéaire, on a ¢(z) = ¢(z, x)
ou

o(z,y) = 5 (p(z,y) + 9y, 7)), z,y€E,

DN | —

et la forme ¢ ainsi définie est symétrique.
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PROPOSITION 4.1.8. Soit ¢ une forme bilinéaire symétrique sur E et q la forme
quadratique associée. Alors pour tous x,y € E et A\ € K on a

(i) g(\x) = N2q(x) ;
(i) 2¢(z,y) = q(z +y) — q(z) — q(y) ;
(iil) gq(z +y) +q(x —y) = 2(q(x) +q(y))-

COROLLAIRE 4.1.9 (Formules de polarisation). Soit ¢ une forme bilinéaire symé-
trique sur E et q la forme quadratique associée. Pour tous x,y € E on a

q(x+y) —qlr) —qly)  qlz+y)—qlxr—y)
o(z,y) = 5 = 1 :

En particulier, si q est une forme quadratique, il existe une unique forme bilinéaire
symétrique @ telle que p(x,z) = q(z) pour tout x € E, que l'on appelle forme
polaire de q.

Si q est une forme quadratique, on peut donc définir rang ¢ = rang ¢ ot ¢ est
la forme polaire de q.

Démonstration de la Proposition 4.1.8. On a q(\x) = p(Ax, \x) = No(z,z) =
A2q(z) par bilinéarité, d’ott le point (i). Pour le second point, on remarque que
gz +y) =plz+y,z+y) =@ )+ ey, y) + 2¢(z,y) par symétrie de ¢, d’on
I'on déduit (ii). Enfin pour le troisiéme point on remarque que le second donne

2¢(x, —y) = q(x —y) — q(z) — q(y). En remarquant que ¢(z, —y) = —p(z,y) et
en combinant ce qui préceéde avec 1’égalité (ii), on obtient le résultat voulu. O]

EXERCICE 4.1.10. Montrer que ¢ : £ — K est une forme quadratique si, et
seulement si, pour tous A € K et x,y € F on a

g(Ax) = Nq(x) et gl +y) +aqlz —y) = 2(q(x) + q(y))-
Si F est de dimension finie, e = (ey, ..., ¢e,) est une base de F, et ¢ une forme

quadratique, on note [gle = [¢]e OU ¢ est la forme polaire de ¢. Alors la formule
(4.1) donne

q(z) = "[z]e - [gle - []e = Z a;jTiTj, T =2x1€1+ "+ Tpen € F,

1<i,g<n

ol on a noté [gle = (a; ;).
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4.1.4 REPRESENTATION DES FORMES BILINEAIRES

Le théoréme suivant nous dit qu’une forme bilinéaire n’est rien autre qu’une
application linéaire £ — E™*.

THEOREME 4.1.11. Soit E un K-espace vectoriel. Alors ’application
Q:HBE)— ZL(EE"), @i,
est un isomorphisme.

Démonstration. L’application ® est injective : si ¢, = 0, alors ¢(v,-) = 0 pour
tout v € E, donc ¢(v,w) = 0 pour tous v,w € E, c’est-a-dire ¢ = 0. Montrons
que ® est surjective. Soit f € Z(F, E*). On pose

o(x,y) = (f(x),y), =yeck.

Alors ¢ est bilinéaire et pour tout z € E on a ®(p)(z) = t,(z) = ¢(z,) = f(x)
par définition de ¢, donc ®(p) = f. O

4.1.5 FORMES BILINEAIRES NON DEGENEREES

DEFINITION 4.1.12. Soit E un K-espace vectoriel et ¢ une forme bilinéaire sur E.
Alors on définit

Go={z€E : p(x,y)=0,ye E} e D,={zxecFE : py,z)=0, ye E}.

les noyaux a gauche et a droite de . Si de plus ¢ est symétrique, alors G, = D,,
et on pose
kerp =kerq =G, = D,

ou ¢ est la forme quadratique associée a .
REMARQUE 4.1.13. Siisoq = {x € E : q(x) = 0} est le cone des vecteurs

isotropes de ¢, alors on a kerg C isoq; l'inclusion inverse est fausse en général.
En effet, si £ =R? et q(x) = 22 — 22 pour x = (r1,22) € E, on a

kerqg={0} et isoq={(w, 1) : 22 =23}

PROPOSITION 4.1.14. Si E est de dimension finie et @ est une forme bilinéaire
sur E alors

dim G, = dim D, = dim £/ — rang ¢.
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Démonstration. Soit e une base de E. Soit x € E. Alors x € G, si et seulement
si pour tout y € E, ce qui équivaut a dire

"rle[@lely]le =0, y € E.

c’est-a-dire si et seulement si [x], appartient au noyau de la matrice *[p]e. On en
déduit que

dim G, = dimker ‘[¢]e = n — rang‘[p]e = n — rang .
De méme, on montre que dim D, = n — rang ¢. O]

DEFINITION 4.1.15. Soit £ un K-espace vectoriel de dimension finie et ¢ une
forme bilinéaire sur E. On dit que ¢ est non dégénérée si G, = D, = {0}.

THEOREME 4.1.16 (Théoréme de représentation de Riesz généralisé). Soit E un
K-espace vectoriel de dimension finie n et @ une forme bilinéaire non dégénérée
sur E. Alors Uapplication

Lot E— E*, v (v, ),

est un isomorphisme. Autrement dit, pour tout £ € E*, il existe un unique vecteur
Ve € E tel que

((x) = p(t*,x), z€E.
Démonstration. L’application ¢, : £ — E* est linéaire. De plus on a
kert, = D, = G, = {0}

par hypothése. Par suite ¢, est injective; comme dim £/ = n = dim £*, on en
déduit que ¢, est un isomorphisme. En notant ¢*¢ = (1,)~!(¢) pour ¢ € E* on a

p(lf,2) =l(z), z€E,

par définition de ¢,. Par bijectivité de ¢, le vecteur (%¢ est unique. O
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4.1.6 ADJOINT D'UN ENDOMORPHISME

THEOREME-DEFINITION 4.1.17 (Endomorphisme p-adjoint). Soit E un K-espace
de dimension finie et ¢ € HB(E) non dégénérée. Alors pour tout f € L(F), il
existe un unique f*% € ZL(E) tel que le diagramme

E Y g~

f*’“"l lfT

E —— B~

2

. *Q T . 9. .
commute, i.e. L, 0 f*9 = f' ouw,. Ceci s’écrit encore

oz, f(y) = o(f*?(x),y), =,y€kE.
L’endomorphisme f*¥ est appelé endomorphisme adjoint de f pour .

Démonstration. Si f*% existe, alors nécessairement f*% = L;l o fT ou,. Récipro-
quement, I’endomorphisme L;1 o fTou, vérifie les conditions demandées. On vérifie
qu’on a bien, pour z,y € F,

o, f(y) = (te(@), f@) = ((f T 01)(@),9) = @([15" 0 f 0 1] (@), 1),

et le dernier terme est exactement o(f*¥(z),y). O

PROPOSITION 4.1.18. Soit E un K-espace de dimension finie et € une base de E.
Soit ¢ € B(E) non dégénérée. Alors

[fle = [‘P];l 't[f*’w]e © [le-

Démonstration. Par définition, on a f*% =" o fT o1,. Soit e = (ef,...,€}) la
base duale de e. Alors

[f7¥]e = [Lso]g*l,e [fT]e* [Lolex e

Ol [ty)er e €st la matrice de ¢, : E— E* dans la base e vers la base e*. Remarquons

que
n

toles) = Y (gle)), en)er =Y plej, eel.

i=1 i=1

Par suite [ty]ere = ‘[¢]e et on obtient

[f%le = t[@]gl : t[fT]e - e

Puisque [f']_, = /[fle, on obtient 'égalité désirée. O

e*
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PROPOSITION 4.1.19 (Propriétés de l'adjoint). Soit E un K-espace vectoriel de

dimension finie et o € B(E) une forme bilinéaire non dégénérée. Alors pour tous
f,ge L(E)etA€K, ona

(1) (f+g)?=f~*+g"°;

) (
(i) (Af)22 = Af*#;
(iii) (fog)™® =g"¥o f¥;
(i) (f4) = I
(v) idg? =idp.

Démonstration. Soient A € Ket f,g € &
e((Af +9)%(x), y) =

E). Soient z,y € E. On a

(

oz, (A +9)(y))

ez, AMf(y) + ez, 9(y))
PN (2),y) + (g% (x), y)
O((Af*? 4+ g7%)(x), ).

Cette égalité étant vraie pour tout y € E, on en déduit que

(A +9)(x) = Af**(x) + g7 ()

pour tout x € E, d’ou les propriétés (i) et (ii). Pour (iii), on remarque que pour
tous z,y € F on a

o((fog)™?(z),y) = vz, (fog)(y) = w(f*(x),9(y) = ¢((g"7 o f*¥)(x),y).

Puisque ¢ est non dégénérée et que I'égalité ci-dessus est vraie pour tous x,y,
on obtient (f o g)*?(x) = ¢g©¥ o f*%(x) pour tout =, d’ou I'égalité souhaitée. La
propriété (iv) s’obtient en appliquant deux fois la définition de I’adjoint, et (v) est
immeédiate. 0

4.2 LOI D'INERTIE DE SYLVESTER

4.2.1 ORTHOGONALITE

DEFINITION 4.2.1. Soit E un K-espace vectoriel et ¢ : £ x E — K une forme
bilinéaire. Une famille (uy,...,ux) est dite orthogonale pour ¢ si

PROPOSITION 4.2.2. Soit E un K-espace vectoriel de dimension finie n et ¢ une
forme bilinéaire symétrique sur E. Alors il existe une base (eq,...,e,) de E qui
est orthogonale pour @, et telle que p(ex,ex) = 0 si et seulement si k > r, ot on
a noté r = rang .
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Démonstration. On proceéde par récurrence sur la dimension. Si n = 1, c¢’est au-
tomatique. Supposons la propriété vraie en dimension n — 1 > 2, et prenons ¢
une forme bilinéaire symétrique sur un espace E de dimension n. On considére
q : E — K la forme quadratique associée. Si celle-ci est nulle, alors ¢ 1'est aussi
par le Corollaire 4.1.9. En particulier » = 0 et n’importe quelle base est orthogo-
nale pour ¢. Sinon, il existe e; € F tel que g(e;) # 0. On considére ¢ : E — K la
forme linéaire définie par

l(x) =¢(er,z), z€E.

(Autrement dit £ = ¢,(eq).) Alors £ est non nulle, puisque £(e;) # 0; par consé-
quent G = ker { est de dimension n — 1. Comme ¢(e;) # 0 on a G N Ke; = {0}
d’ou l'on tire
E = G EB Kel.

La restriction ¢|gxe est une forme bilinéaire symétrique sur G. En appliquant
I'hypothése de récurrence, il existe (e, . .., e,) une base de G telle que ¢(e;,e;) =0
si2<i# 5 < n,etple,e) #0ssij <rpour un certain r > 1. En outre
¢(er,e;) = 0si j > 1 puisque dans ce cas on a e; € G = ker/. Ainsi la base
e = (eq,...,6,) est orthogonale pour ¢. Dans cette base, la matrice de ¢ est
diagonale et ses éléments diagonaux sont les p(e;,e;) avec 1 < j < n, et on a
o(ej,ej) # 0ssi 7 < r. On a alors rang ¢ = rang[ple = r, ce qui conclut la
démonstration. O]

DEFINITION 4.2.3. Soit E un K-espace vectoriel, FF C E et ¢ : ExXx E — K
une forme bilinéaire symétrique. L’espace p-orthogonal de F, noté Fte C E, est
définie par

Fr?={reE : p(x,y) =0, y € F}.

PROPOSITION 4.2.4. Si E est un K-espace vectoriel, ¢ € B(E) est symétrique et
F C E alors
dim F+% + dim F = n + dim(F N ker ¢).

Démonstration. O

4.2.2 LOI D'INERTIE DE SYLVESTER

DEFINITION 4.2.5. Soit E/ un R-espace vectoriel de dimension finie, ¢ une forme
quadratique sur E et ¢ sa forme polaire. La signature de ¢ (ou de q) est le couple
(p,q) € N? ou p et ¢ sont respectivement donnés par la dimension maximale d'un
sous-espace sur lequel ¢ est définie positive (respectivement définie négative).
Autrement dit, on a

p=max{dimF : FCE, q(z) >0, z € F\{0}}
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tandis que ¢ est donné par
¢=max{dimF : FCE, q(z) <0, z € F\{0}}.

Le théoréme suivant montre que deux formes quadratiques réelles sont équi-
valentes si et seulement si elles ont méme signature.

THEOREME 4.2.6 (Loi d’inertie de Sylvester). Soit E un R-espace vectoriel de
dimension finie n, @ une forme bilinéaire symétrique sur E, r = rang ¢ et (p,q)
la signature de @. Alors p+ q = r et il existe une base e de E la matrice [p|o est
diagonale par blocs et donnée par

:

[@]e = _Iq )

0 [0]

Autrement dit, si x = x1e1+---+xe, ety =y1e1+ - +ype, sont des éléments
de E avec xj,y; € R, on a

p q
plry) =Yz — Y 2y
j=1

Jj=p+1

Démonstration. Soit € une base de E qui est orthogonale pour ¢, et telle que
©(€j,€;) est non nul ssi 1 < j < r. Soit p le cardinal de I'ensemble des j vérifiant
©(€j,€;) > 0; quitte a réordonner les e;, on peut supposer ¢(e;,e;) > 0 ssi
1 < j < p de sorte que ¢(e;,€;) < 0 pour tout p+ 1 < j < r. On pose

ej = lples,e)| 2, j=1,...r

Alors |p(ej,ej)| = 1 pour tout 1 < j < r, donc

plejie) =1 si 1<j<p et gplee)=—1 si p+1<j<r

Il reste & montrer que p = p et que r — p = ¢ o (p, q) est la signature de ¢. Si

G = vect(ey,...,e;), on a g(xz) > 0 pour pour tout x € G non nul. Ainsi on a
bien p > dim G = p. Réciproquement, montrons que p > p. Soit F' un sous-espace
sur lequel ¢ est définie positive et posons G = vect(epi1, ..., e,). Puisque ¢ est

définie positive sur ', on a G N F = {0}. Par conséquent
dim FF <n —dimG = p,

d’ou l'on tire p < p. En appliquant ce qui précéde a la forme quadratique ¢ on
obtient r — p = ¢, d’ott p + ¢ = r. Ceci achéve la démonstration. O
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4.2.3 FORMES QUADRATIQUES COMPLEXES

THEOREME 4.2.7 (Forme normale pour les formes quadratiques complexes). On
suppose ict K = C. Soit E un C-espace vectoriel de dimension finie n, ¢ une
forme bilinéaire symétrique sur E et r = rang . Alors il existe une base e de E

telle que .
(%] O
= (5 @)

0

Autrement dit, si v = x1e1+---+x,e, ety =yie1+ -+ ype, sont des éléments
de E avec xj,y; € C, on a

p(r,y) =D ;.
j=1

Démonstration. On se donne € = (€1, ...,¢€,) une base orthogonale pour ¢ telle
que ¢(€j,€;) # 0 est non nul ssi 1 < ¢ < r. Pour tout j, soit a; € C une racine
complexe de ¢(€;,€;), c’est-a-dire qui vérifie a3 = ©(€;,€;). On pose e; = a; '€
pour tout 1 < j <retej =e¢;sij>r. Alors par bilinéarité on a

o(ej,e5) = a;p(e;,¢;) =1

pour tout j = 1,...,r et p(ej,e;) = 0si j > r. En outre la base e = (eq,...,e,)
est orthogonale pour ¢, ce qui achéve la démonstration. O

4.3 ESPACES EUCLIDIENS

4.3.1 DEFINITIONS ET PREMIERES PROPRIETES

DEFINITION 4.3.1. Un espace euclidien (E,(-|-)) est la donnée d’un R-espace
vectoriel E' de dimension finie, muni d’un produit scalaire (- |- ) sur F — c’est-a-
dire une forme bilinéaire symétrique définie positive. Pour tout x € FE, la norme
euclidienne de x est donnée par

2]l = +/ (x]2)

Il est facile de vérifie que || -|| est bien une norme sur E, c¢’est-a-dire qu’on a x = 0
ssi ||z|| = 0 et pour tous A € R et 2,y € E,

[Azf] = AL [l etz +yll < llzll + llyll-

Une base orthonormale (eq, ..., e,) de E est une base orthogonale pour (- |-) telle
que ||| =1 pour tout j =1,...,n.
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REMARQUE 4.3.2. Par le Théoréme 4.2.6, on sait que dans tout espace euclidien,
il existe toujours une base ortho-normale. Dans une telle base, la matrice de
@ = (-|-) est donnée par I,.

THEOREME 4.3.3 (Pythagore). Soit (E,(-|-)) un espace euclidien et (uq, ..., uy)
une famille orthogonale. Alors

k
D> ue

(=0

2 k
= [lue*.
=0

Démonstration. On a par bilinéarité et par orthogonalité

k k k
> u :<Zu@ ZW): > (uglue) = zw
=0 =0 /=0

0<j,¢<k
ce qui est I'égalité voulue. O]

2

4.3.2 ENDOMORPHISME ADJOINT

Soit (E,( |)) un espace euclidien. Si f € Z(F), on notera f* = f*? ou
¢ = (+]+), cf. le Théoréme-Définition 4.1.17. Autrement dit, f* € Z(F) est
défini par

(z[f(y)) = (f*(@)ly), =zyeE.

On notera aussi F'* = F% pour tout sous-espace F' C E. Une application im-
médiate de la Proposition 4.1.19 est la suivante.

PROPOSITION 4.3.4 (Propriétés de I'adjoint euclidien). Soit (E, (-|-)) un espace
euclidien. Alors pour tous f,g € ZL(E) et A€ R, on a

i) (f+9=f+g";
(i) (Af)r=Af*;
(ili) (fo ) =g of*;
(iv) (f) =

)

(v 1E—1dE

DEFINITION 4.3.5. On dit que f € Z(FE) est auto-adjoint ou symétrique (resp.
anti auto-adjoint ou anti-symétrique) si f = f* (resp. f = —f*). On notera . (F)
(resp. o7 (F)) l'espace des endomorphismes symétriques.

Une application directe de la Proposition 4.1.18 est la suivante.
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PROPOSITION 4.3.6. Soit e une base orthonormale de E. Alors pour tout f €
S (E), on a

e ="[fle-
Ainsi Uespace . (E) (resp. o/ (E)) est un sous-espace de dimension n(n + 1)/2
(resp. n(n —1)/2) de Z(F).

PROPOSITION 4.3.7 (Préservation des orthogonaux). Soit f € S (E) et F C E
qui est stable par f. Alors F*+ est stable par f.

Démonstration. Soit x € F+. Pour tout y € F, on a f(y) € F par hypothése et
comme f € . (F), on obtient

(f()ly) = (=[f(y)) = 0.
Ainsi f(z) € Ftet f(F+) c F*. -

4.3.3 THEOREME SPECTRAL

THEOREME 4.3.8 (Théoréme spectral pour les endomorphismes). Soit (E, (-] ))
un espace euclidien et f € S (E). Alors il existe une base orthonormale e de E
telle que [fle est diagonale.

Avant de donner la preuve du théoréme spectral, énongons trois résultats in-
termédiaires.

LEMME 4.3.9 (Existence d'une droite ou d’un plan stable pour les endomorphismes
réels). Soit E un R-espace vectoriel de dimensionn > 1 et f € L(E). Alors il
existe F' C E un sous-espace de dimension 1 ou 2 qui est stable par f.

Démonstration. On peut supposer £/ = R". Si xy admet une racine, alors f admet
un vecteur propre x et F' = Rz est stable par f. Sinon, xy n’a que des racines
dans C\R. Comme Y est un polynome réel, on a x;(\) = x;(\) pour tout A € C,
donc A est une racine de x ssi A en est une. Par suite on peut écrire

T

X=X =)0 (X =A%

=1

ot les \; € C sont deux a deux distincts. En utilisant encore que x; est réel, on
voit que o; = ;. Le théoréme de Cayley-Hamliton et lemme des noyaux donnent
alors

E = @ker(@(/)) ot Q5= (X = \)(X X € RIX].
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En particulier il existe j tel que ker(Q;(f)*) n’est pas réduit a {0} donc ker Q;(f)
non plus. Mais alors si x € ker Q;(f) \ {0}, on a

)
0=Q;(f)(x) = f*(z) — 2Re(N;) f(2) + |\,

donc f?(z) est combinaison linéaire de f(z) et de z. Ainsi F' = vect(z, f(z)) est
stable par f. O]

LEMME 4.3.10 (Orthogonalité des vecteurs propres d'un endomorphisme symé-
trique). Deux vecteurs propres d’un endomorphisme symétrique associés a des
valeurs propres (réelles) distinctes sont orthogonauz.

Démonstration. Soit E un espace euclidien et f € .(F). Soient A, u € R distincts
et z,y € E tels que f(z) = Az et f(y) = py. On a

Mely) = (f(@)ly) = (=[f(y)) = nlzly),
donc (A — p)(z|y) ce qui donne (z|y) = 0. O

LEMME 4.3.11 (Théoréme spectral en dimension 2). Si dim F' = 2 et g € ./ (F),
alors il existe une base orthonormale de vecteurs propres pour g.

Démonstration. Soit f une base orthonormale de F', et A = [g]¢ € My(R). Alors
A = (a; ;) est symétrique, donc son polynéme caractéristique s’écrit

= X? —tr(A)X +det(4) = X* — (a +¢) + ac — b

oton anoté a=ay1,c=assetb=a;2=as;.51b=0, alors A est diagonale et
il n’y a rien & démontrer. Sinon, le discriminant (a+c)? —4ac+4b* = (a—c)* +4b*
de x, est strictement positif, donc x, a deux racines distinctes. Par conséquent
il existe une base (e, es) de F formée de vecteurs propres de g. Le lemme 4.3.10
implique alors que la famille (eq, ez) est orthogonale. Quitte a remplacer e; par
e;/|le;||, on peut les supposer les e; de norme 1, de sorte que (eq, e2) est ortho-
normale. O

Démonstration du théoreme spectral. On raisonne par récurrence sur la dimen-
sion. Pour n = 1, c’est trivial, et le cas n = 2 découle du Lemme 4.3.11. On
suppose donc le résultat vrai en toute dimension 1 < k< n—1pourn—12> 2.
Soit E' un espace euclidien de dimension n. Le lemme 4.3.9 nous donne ’existe
d’un espace F' de dimension 1 ou 2 tel que f(F) C F. Soit g = f|r € ZL(F).
Alors par hypothése de récurrence, il existe une base orthonormale f de F for-
mée de vecteurs propre de g (donc de f). Notons que F* est stable par f par la
Proposition 4.3.7. Comme dim F* < n — 1, I'hypothése de récurrence nous donne
une base ortho-normale g de F'* qui est formée de vecteurs propres de f. Mais
alors f @ g est une base orthonormale de E formée de vecteurs propres de f. La
récurrence est établie. O]
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On conclut ce paragraphe avec une démonstration alternative du théoréme
spectral basée sur le calcul différentiel, qui n’utilise pas les trois lemmes précédents.
En particulier, elle n’utilise ni le lemme des noyaux ni le théoréme de Cayley—
Hamilton.

Démonstration alternative du théoréme spectral. On procéde encore par récurrence
sur la dimension. Pour n = 1, c’est trivial, et on suppose le résultat vraie en di-
mension n — 1 > 1. Soit f € Z(R"). Soit S = {x € R* : ||z|| = 1} la sphére
unité de R™. Alors S est une partie compacte de R™, donc 'application

o:5—=>R, z+— (f(x)|r)

admet un maximum qu’elle atteint en un point z, € S. On affirme que z, est un
vecteur propre de S. En effet, soit /' = Rz, et x € F'* de norme 1. On pose

Y(t) = cos(t)x, +sin(t)z, teR.

Comme x € F* on a ||y()]|? = cos?(t)||z.]|? + sin®(¢)||z]|> = 1 pour tout ¢, donc
v(t) € S. En outre, on a

B((1)) = <cos(t) F(as) + sin(t) f(2)] cos(t)z, + sin(t)x)
= cos(t)?®(z,) + sin(t)>®(x) + 2 cos(t) sin(t) (f (z.)|z).

Comme v admet un maximum au point ¢ = 0, on a 7/(0) = 0 ce qui donne
0 = 2(f(x,)|z). Par conséquent f(x,) L x. Ceci étant vrai pour tout & € F* on
obtient f(x,) € (F+)* = F = Ra, donc z, est vecteur propre de f. En outre f
préserve aussi F'* et par hypothése de récurrence il existe une base orthonormale
g de F*+ formée de vecteurs propres de f. Comme z, € S, la base e =z, © g est
orthonormale et formée de vecteurs propres de f. La récurrence est établie. [

4.4 ENDOMORPHISMES ORTHOGONAUX

Dans cette section, on se donne (E, (- |-)) un espace euclidien. En particulier,
K=R.

4.4.1 DEFINITIONS, PREMIERES PROPRIETES

DEFINITION 4.4.1. Un endomorphisme f € Z(F) est dit orthogonal si pour tous
x,y € F,on a

(f@)|f(y)) = (xly).

On note O(F) I'ensemble des endomorphismes orthogonaux de E.
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En particulier pour tout f € O(E), on a
If@)I” = [lz[?, =€ E.

DEFINITION 4.4.2. Une matrice A € M, (R) est dite orthogonale si *AA =1,,. On
note O, (R) l'espace des matrice orthogonales.

PROPOSITION 4.4.3. Soit f € Z(F). Alors les propriétés suivantes sont équiva-
lentes :

(i) f est orthogonal ;

(ii) f est un isomorphisme et f~1 = f*;

)
(iii) il existe une base de E dont l'image par f est une base orthonormale de E ;
)

(iv) Uimage par f de toute base orthonormale de E est une base orthonormale
de E ;

(v) il existe une base orthonormale e de E telle que la matrice [fle est orthogo-
nale ;

(vi) pour toute base orthonormale e de E, la matrice [fle est orthogonale.

Démonstration. L’équivalence entre (i), (ii), (iii) et (iv) est immédiate. L’équiva~
lence entre (iii) et (v) découle de la Proposition 4.3.6. Les implications (iii) = (iv)
et (v) = (vi) sont triviales. O

PROPOSITION 4.4.4. Une matrice est orthogonale si et seulement si c’est la ma-
trice de passage entre deux bases orthogonales de E.

Démonstration. Soit A € O,(R). Soit e = (eq,...,e,) une base orthonormée de
E et f e Z(E) telle que [fle = A. Alors f est un endomorphisme orthogonal,
donc f = (f(e1),..., f(e,)) est une base orthonormée de E. Il suit que [f]e est la
matrice de passage de e a f. O]

THEOREME 4.4.5 (Théoréme spectral pour les matrices). Soit A € M,(R) une
matrice symétrique. Alors il existe Q) € O,(R) et une matrice diagonale D telles
que

D=QAQ = 'QAQ.

Démonstration. Soit A symétrique. Soit f € Z(R") I'endomorphisme canonique-
ment associé & A. Alors f est symétrique donc il existe une base orthonormée e
formée de vecteurs propres de f, de sorte que D = [f]e est diagonale. Si b est la
base canonique de R"™, on note () la matrice de passage de b a e. Alors

D=[fle=Q '[flb@ = Q'AQ = 'QAQ

puisque ) est orthogonale. O
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PROPOSITION 4.4.6. Soit f € O(E). Alors det(f) = £1.

Démonstration. Soit e une base orthonormale de E. Alors [f]o est une matrice
orthogonale, donc

1= det([f]e_l[f]e) = det(t[f]e[f]e) = det([f]e>27

d’out le résultat. O

4.4.2 (CLASSIFICATION DES ENDOMORPHISMES ORTHOGONAUX EN
DIMENSION 3

Dans ce paragraphe nous démontrons le résultat suivant.

THEOREME 4.4.7 (Endomorphismes orthogonaux en dimension 3). On suppose
que E est un espace euclidien de dimension n = 3. Soit f € O(F). Alors il existe
une base orthonormale e et des réels \,n € {—1,1} et 0 € R tels que

A0 0
[fle=10 cosf® —nsiné
0 sinf mncosf

REMARQUE 4.4.8. Le Théoréeme 4.4.7 dit que tout endomorphisme orthogonal
de R3 est soit une rotation autour d’'un axe, soit une symétrie orthogonale par
rapport a un plan suivi d’une rotation autour de 1’axe perpendiculaire a ce plan.

Nous aurons besoin du résultat analogue en dimension 2.

THEOREME 4.4.9 (Endomorphismes orthogonaux en dimension 2). On suppose
que E est un espace euclidien de dimension n = 2. Soit f € O(F). Alors il existe
une base orthonormale e et 0 € R tels que

[l = (COSH —7sin 9) .

sinf  ncosf
oun=detfe{-11}.

Démonstration. Soit e = (1, e;) une base orthonormale de E. Ecrivons f(e;) =
aeq + Bey avee a, f € R. Comme f est orthogonal, on a

L=f(e)]” = o® + 82

Par suite il existe 6 € R tel que a = cos 8 et 5 = sinf. Comme f(e3) est orthogonal
aeret] fle)||* =1o0na f(ey) =n(—sin(f)e; +cos(f)es) avec n = £1. Alors [f]e
est de la forme annoncée et on calcule n = det[f]. = det f. O
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Démonstration du Théoréeme /./.7. On suppose que E est un espace euclidien de
dimension 3. Soit f € O(E). Alors x; € R3[X] donc x; admet au moins une
racine réelle, que I'on note A € R. Soit € F non nul un vecteur propre associé
de norme 1. On a

L= ||z = [If(@)[I* = [Mz]|* = Al
donc A = +1. Soit F' = (Rz)*. Alors pour tout y € F, on a, puisque x = nf(x),

(fW)|z) =n(f(W)|f(z)) = n(ylz) = 0.

Par conséquent f préserve F'. Par le Théoréme 4.4.9, il existe une base f de F et
des réels n € {—1,1} et § € R tels que

cos f —nsinQ)
sinf  ncosf )’

lele = {

Soite=x@f. Alors on a

A0 0
[fle={ 0 cosf® —nsind |,
0 sinf mncosf

et on calcule \n = det f. O
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