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Dans tout ce chapitre, n désigne un entier supérieur ou égal à 1.

1.1 Le groupe symétrique

1.1.1 Premières définitions

Définition 1.1.1 (Groupe symétrique). Le groupe symétrique ou groupe des per-
mutations de {1, . . . , n} est l’ensemble des bijections de {1, . . . , n}. Cet ensemble
est noté Sn et est un groupe pour la la loi de composition.
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4 CHAPITRE 1. GROUPE SYMÉTRIQUE ET DÉTERMINANT

On utilisera parfois la notation

σ =

Å
1 2 · · · n

σ(1) σ(2) · · · σ(n)

ã
.

Exemple 1.1.2. La permutation

τ =

Å
1 2 3
2 1 3

ã
(1.1)

est la permutation vérifiant τ(1) = 2, τ(2) = 1 et τ(3) = 3.

Définition 1.1.3 (Support d’une permutation). Le support d’une permutation
σ ∈ Sn est l’ensemble suppσ ⊂ {1, . . . , n} défini par

suppσ =
{
i ∈ {1, . . . , n} : σ(i) 6= i

}
.

Notons qu’on a toujours σ(suppσ) = supp σ.

Exemple 1.1.4. Le support de la permutation τ donnée par (1.1) est

supp τ = {1, 2}.

Proposition 1.1.5. Si σ, τ ∈ Sn sont deux permutations à supports disjoints,
alors στ = τσ, i.e. σ et τ commutent.

Démonstration. Soit i ∈ {1, . . . , n}. Si i /∈ (suppσ ∪ supp τ), alors σ(i) = i et
τ(i) = i de sorte que (στ)(i) = i = (τσ)(i). Si i ∈ suppσ, alors i /∈ supp τ car
σ et τ sont à supports disjoints. Puisque σ(i) ∈ suppσ on a aussi σ(i) /∈ supp τ .
Ainsi τ(i) = i et τ(σ(i)) = σ(i). On obtient donc

(τσ)(i) = τ(σ(i)) = σ(i) = σ(τ(i)) = (στ)(i),

et on montre de même que si i ∈ supp τ alors (τσ)(i) = (στ)(i). Ceci achève la
démonstration.

Définition 1.1.6 (Cycles). Soit r > 2. Une permutation σ ∈ Sn est appelé cycle
de longueur r s’il existe r entiers distincts i1, . . . , ir de {1, . . . , n} tels que

σ(i1) = i2, σ(i2) = i3, . . . , σ(ir) = i1,

et σ(i) = i si i est distinct des im. Un tel cycle sera noté

σ =
(
i1 i2 · · · ir

)
. (1.2)

Le support du cycle σ est {i1, . . . , ir}. Un cycle de longueur 2 est appelé transpo-
sition.
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Remarque 1.1.7. L’écriture (1.2) n’est pas unique : elle l’est à permutation cir-
culaire des facteurs i1, . . . , ik près. En effet pour tout 2 6 q 6 k, on a(

i1 i2 · · · ir
)

=
(
iq · · · ik i1 · · · iq−1

)
.

Exemple 1.1.8. La permutation τ donnée par (1.1) est une transposition, et on
a

τ =
(
1 2

)
.

Si σ1, . . . , σs sont des permutations de Sn, on notera

σ1 · · ·σs = σ1 ◦ · · · ◦ σs.

Exemple 1.1.9. La permutation
(
i1 i2 · · · ir

) (
j1 i2 · · · ip

)
est la compo-

sition σ1 ◦ σ2 où σ1 =
(
i1 i2 · · · ir

)
et σ2 =

(
j1 i2 · · · ip

)
.

Exercice 1.1.10. Montrer que pour tous i1, . . . , ik distincts, on a(
i1 i2 · · · ik

)
=
(
i1 ik

) (
i1 ik−1

)
· · ·
(
i1 i2

)
. (1.3)

Pour tout σ ∈ Sn et ` ∈ N, on définit σ` ∈ Sn par

σ0 = id et σ`+1 = σσ` = σ`σ, ` > 0.

Autrement dit, on a
σ` = σ ◦ · · · ◦ σ︸ ︷︷ ︸

` fois

.

Si ` > 0, on note σ−` = (σ−1)−`, de sorte que σ−` = (σ`)−1 et

σ`1+`2 = σ`1σ`2 , `1, `2 ∈ Z. (1.4)

1.1.2 Décomposition en produits de cycles et de trans-
positions

Le résultat suivant est crucial, et permet de décomposer toute permutation en
des cycles à supports disjoints

Théorème 1.1.11 (Décomposition en produit de cycles à supports disjoints).
Toute permutation σ peut être décomposée comme un produit de cycles à support
disjoints. Cette décomposition est unique, à l’ordre des cycles près.

Avant de démontrer ce résultat, énonçons une conséquence importante.

Corollaire 1.1.12 (Décomposition en produit de transpositions). Toute permu-
tation σ peut être décomposée (de manière non unique !) comme un produit de
transpositions.
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Démonstration du corollaire 1.1.12. D’après le théorème précédent il suffit de mon-
trer que tout cycle σ =

(
i1 i2 · · · ik

)
s’exprime comme un produit de transpo-

sitions, ce qui découle de l’équation (1.3). Ceci conclut la démonstration.

Exemple 1.1.13. On suppose n = 4 et on regarde le cycle σ =
(
2 1 4

)
, de sorte

que
σ(1) = 4, σ(2) = 1, σ(3) = 3 et σ(4) = 2.

Alors on a σ =
(
2 4

) (
2 1

)
.

Avant de démontrer le Théorème 1.1.11, introduisons quelques notions. Si σ ∈
Sn et i ∈ {1, . . . , n}, on note

Oσ(i) =
{
σ`(i) : ` ∈ N

}
l’orbite de i sous σ. Notons que σ(Oσ(i)) ⊂ Oσ(i).

Lemme 1.1.14. Pour tous σ ∈ Sn et i ∈ {1, . . . , n}, la suite (σ`(i))`∈N est pério-
dique. On note

`σ(i) = inf{` ∈ N : σ`(i) = i}
la période minimale de i sous σ.

Démonstration. Pour tout ` ∈ N on a σ`(i) ∈ {1, . . . , n}. Ainsi, les n+ 1 nombres
i, σ(i), . . . , σn(i) prennent au plus n valeurs distinctes, dont deux de ces nombres
sont égaux, et il existe `1, `2 ∈ {0, . . . , n} tels que `1 < `2 et σ`1(i) = σ`2(i). Mais
alors en appliquant σ−`1 à cette égalité on obtient par (1.4)

i = σ`0(i)

où `0 = `2 − `1 > 0. On obtient ainsi par (1.4)

σ`+`0(i) = σ`(σ`0(i)) = σ`(i)

donc la suite (σ`(i)) est périodique de période `0. Par conséquence `σ(i) est bien
défini.

Lemme 1.1.15. Si σ est un cycle et i ∈ suppσ, on a

σ =
(
i σ(i) · · · σ`σ(i)−1(i)

)
.

Démonstration. On écrit σ =
(
i1 · · · i`

)
où ` est la longueur de σ. Si i ∈ suppσ,

il existe q tel que iq = i. Mais alors

σ =
(
i iq+1 · · · i` i1 · · · iq−1

)
,

et on a bien iq+m = σm(i) si 0 6 m 6 `−q et σm(i) = im−`+q si `−q+1 6 m < `.
Par ailleurs comme les im sont distincts et que σ(iq−1) = iq = i par définition de
σ, on a `σ(i) = `, ce qui conclut la démonstration.
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Notons que le Lemme 1.1.14 implique que pour tous i ∈ {1, . . . , n} et tout
σ ∈ Sn, on a

Oσ(i) = Oσ(j) pour tout j ∈ Oσ(i). (1.5)

Ceci implique facilement que

j ∈ Oσ(i) ⇐⇒ Oσ(i) = Oσ(j) ⇐⇒ i ∈ Oσ(j). (1.6)

Ainsi la relation ∼ définie par

i ∼ j ⇐⇒ Oσ(i) = Oσ(j)

est une relation d’équivalence sur {1, . . . , n}. D’autre part, notons que

i /∈ suppσ ⇐⇒ Oσ(i) = {i}.

En utilisant (1.6) on en déduit alors

i ∈ suppσ ⇐⇒ Oσ(i) ⊂ suppσ. (1.7)

On peut maintenant procéder à la démonstration de la décomposition en cycles à
supports disjoints.

Démonstration du Théorème 1.1.11. Soit σ ∈ Sn. Si suppσ = {1, . . . , n} alors
σ = id et il n’y a rien à démontrer. Sinon, on se donne i1 ∈ suppσ. Alors par (1.7)
on a que O1 = Oσ(i1) est contenu dans suppσ, et on a

O1 =
{
i1, σ(i1), . . . , σ`1−1(i1)

}
où `1 = `σ(i1) > 1.

Si O1 = suppσ, on s’arrête. Sinon, on choisit i2 ∈ suppσ \ O1 et on pose O2 =
Oσ(i2) et `2 = `σ(i2). Alors on a O2 ∩O1 = ∅ puisque i2 /∈ O1. Par récurrence, on
construit s éléments i1, . . . , is deux à deux distincts, et des sous-ensembles

Ok =
{
ik, σ(ik), . . . , σ

`k−1(ik)
}
, `k = `σ(ik), k = 1, . . . , s,

tels que suppσ = O1 t · · · t Os. On affirme alors que

σ = σ1 · · ·σs où σk =
(
ik σ(ik) · · · σ`k−1(ik)

)
pour tout k = 1, . . . , s.

(1.8)
En effet, soit i ∈ {1, . . . , n}. Si i /∈ suppσ, on a i /∈ Ok pour tout k, donc
σk(i) = i pour tout k, de sorte que σ1 · · ·σs(i) = i = σ(i). Si i ∈ suppσ, il existe
un unique k ∈ {1, . . . , s} tel que k ∈ Ok = suppσk. Mais alors pour m 6= k
on a i /∈ suppσm = Om, ce qui donne σm(i) = i pour m 6= k. Puisque les σm
commutent par la Proposition 1.1.5, on obtient

σ1 · · ·σs(i) = σk(i).
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Or i = σ`(ik) pour un certain ` ∈ {0, . . . , `k − 1} car i ∈ Ok, donc

σ(i) = σ(σ`(ik)) = σ`+1(ik) = σk(ik)

(si ` < `k − 1, la dernière inégalité est claire ; si ` = `k − 1 on utilise que
σk(σ

`k−1(ik)) = ik = σ`k(ik) = ik par définition de `k).
Il reste à démontrer l’unicité de la décomposition. Soit σ = τ1 · · · τq une autre

décomposition en cycles à supports disjoints. Soit k ∈ {1, . . . , s} et i ∈ suppσk.
Alors il existe un unique m tels que i ∈ supp τm puisque i ∈ suppσ. On a alors

τ `m(i) = σ`(i) = σ`k(i)

pour tout ` ∈ N. On obtient que `σk(i) = `σ(i) = `τm(i), et comme σk et τm sont
des cycles, on a par le Lemme 1.1.15,

σk =
Ä
i σk(i) · · · σ

`σk (i)−1

k (i)
ä

=
(
i σ(i) · · · σ`σ(i)−1(i)

)
=
(
i τm(i) · · · σ`τm (i)−1(i)

)
= τm.

On a montré qu’il existe une application m̄ : {1, . . . , k} → {1, . . . , q} telle que

σk = τm̄(k), k = 1, . . . , s.

En inversant les rôles des σk et des τm, on construit de la même manière une fonc-
tion k̄ : {1, . . . , q} → {1, . . . , s} telle que τm = σk̄(m) pour toutm. Par construction
on a la relation k̄ ◦ m̄ = id. Ceci implique q = s et aussi que (τ1, . . . , τs) est un
ré-ordonnement des (σ1, . . . , σs). Ceci conclut la démonstration.

1.1.3 Signature

Dans toute la suite on note

Pn = {{i, j} : i 6= j}

l’ensemble des paires (non ordonnées !) de {1, . . . , n}. On a en particulier

card Pn =

Å
n
2

ã
=
n(n− 1)

2
.

Toute permutation σ ∈ Sn induit une application

σ̂ : Pn → Pn, {i, j} 7→ {σ(i), σ(j)}.
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On dit qu’une paire {i, j} ∈ Pn est inversée par σ si l’ordre de σ(i), σ(j) est
inversé par rapport à celui de i, j. Autrement dit, la paire {i, j} ∈ Pn est inversée
si

Dσ({i, j}) < 0, où Dσ({i, j}) =
σ(j)− σ(i)

j − i
.

Une paire est non inversée si elle n’est pas inversée, c’est-à-dire si Dσ({i, j}) > 0.

Définition 1.1.16 (Nombre d’inversions et signature d’une permutation). Le
nombre d’inversions N(σ) de σ est, comme son nom l’indique, le nombre de paires
non ordonnées {i, j} ∈ Pn qui sont inversées par σ. La signature ε(σ) d’une
permutation σ est donnée par

ε(σ) = (−1)N(σ).

On a la formule suivante pour ε(σ).

Proposition 1.1.17. Pour σ ∈ Sn on a

ε(σ) =
∏

{i,j}∈Pn

Dσ({i, j}) =
∏

{i,j} ∈Pn

σ(j)− σ(i)

j − i
. (1.9)

Démonstration. On définit ε̃(σ) par le terme de droite de (1.9). Par définition de
N(σ), on voit tout de suite que le signe de ε̃(σ) est le même que celui de (−1)N(σ).
En outre, le changement de variables {k, `} = σ̂({i, j}) = {σ(i), σ(j)} donne

|ε̃(σ)| =
∏
{i,j}∈Pn

|σ(j)− σ(i)|∏
{i,j}∈Pn

|j − i|
=

∏
{k,`}∈Pn

|k − `|∏
{i,j}∈Pn

|j − i|
= 1.

Mais comme ε̃(σ) a même signe que (−1)N(σ) on obtient ε̃(σ) = (−1)N(σ) = ε(σ),
ce qui conclut la démonstration.

Théorème 1.1.18. Pour toutes permutations σ, τ ∈ Sn, on a

ε(στ) = ε(σ)ε(τ).

Autrement dit, la signature est un morphisme de groupes Sn → {−1, 1}.

Démonstration. Soient σ, τ ∈ Sn. Notons que pour {i, j} ∈ Pn, on a

Dστ ({i, j}) =
σ(τ(j))− σ(τ(i))

j − i

=
σ(τ(j))− σ(τ(i))

τ(j)− τ(i)
· τ(j)− τ(i)

j − i
= Dσ({τ(i), τ(j)})Dτ ({i, j}).
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On en déduit que

ε(στ) =
∏

{i,j}∈Pn

Dστ ({i, j}) =

Ñ ∏
{i,j}∈Pn

Dσ(τ̂{i, j})

éÑ ∏
{i,j}∈Pn

Dτ ({i, j})

é
.

Le dernier produit dans le membre de droite de l’égalité ci-dessus est ε(τ). D’autre
part en effectuant le changement de variable {k, `} = τ̂{i, j}, on obtient∏

{i,j}∈Pn

Dσ(τ̂{i, j}) =
∏

{k,`}∈Pn

Dσ({k, `}) = ε(σ).

Finalement on a bien obtenu ε(στ) = ε(σ)ε(τ).

Théorème 1.1.19 (Propriétés de la signature). La signature ε : Sn → {−1, 1}
vérifie les propriétés suivantes :

(i) si σ = id est la permutation identité, alors ε(σ) = 1 ;

(ii) si σ−1 est l’inverse de σ, on a ε(σ−1) = ε(σ)−1 = ε(σ) ;

(iii) si σ est un cycle de longueur k, alors ε(σ) = (−1)k−1 ;

(iv) si τ est une transposition, alors ε(τ) = −1.

Démonstration. Les points (i) est clair par le Théorème 1.1.18, puisque σ(id) =
σ(id ◦ id) = σ(id)2 = 1 puisque ε(id) ∈ {−1, 1}. Pour le point (ii), on remarque
simplement que

1 = ε(id) = ε(σ ◦ σ−1) = ε(σ)ε(σ−1)

ce qui donne ε(σ−1) = ε(σ)−1. Puisqu’un cycle de longueur k peut s’écrire comme
un produit de k− 1 transpositions (cf. (1.3)), le point (iii) se déduit du point (iv)
facilement en utilisant le Théorème 1.1.18.

Montrons à présent le point (iv). Soit τ =
(
i j

)
une transposition. On peut

supposer sans restriction de généralité que i < j, puisque τ =
(
i j

)
=
(
j i

)
.

Une paire {k, `} ∈ Pn telle que k, ` /∈ supp τ est stabilisée par τ (en effet τ(k) = k
et τ(`) = `) de sorte qu’elle n’est pas inversée par τ . Si {k, `} = {i, j}, alors {k, `}
est inversée par τ , puisque

i < j mais τ(i) = j > i = τ(j).

Il reste maintenant deux cas possibles : k = i et ` 6= j, ou k = j et ` 6= i. Si k = i
et ` 6= j, on a que τ(`) = `. En particulier, si ` < i, alors la paire {k, `} n’est pas
inversée par τ . Si i < ` < j, elle est inversée par τ puisqu’alors τ(`) = ` < j = τ(i).
Enfin si ` > j, la paire n’est pas inversée. Finalement, il y a exactement j − i− 1
paires {k, `} qui sont inversées et telles que k = i et ` 6= j. De même, on montre
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qu’il y a exactement j − i − 1 paires {k, `} qui sont inversées et telles que k = j
et ` 6= i. Ainsi on a obtenu que le nombre d’inversions

N(τ) = 1 + 2(j − i− 1)

est impair, donc ε(τ) = −1.

Une conséquence immédiate des propriétés précédentes est le résultat suivant,
qui peut être utile en pratique.

Corollaire 1.1.20. Si σ = σ1 · · ·σs, où les σm sont des cycles à supports dis-
joints, alors

ε(σ) = (−1)`1+···+`s−s

où `m est la longueur du cycle σm.
Si σ = τ1 · · · τs est un produit de s transpositions, alors ε(σ) = (−1)s.

La dernière inégalité nous dit que, même si la décomposition en produit de
transpositions n’est pas unique, la parité du nombre de transpositions d’une telle
décomposition doit être toujours la même.

1.2 Déterminant

1.2.1 Formes n-linéaires alternées

Dans toute la suite, on note E = Kn.

Définition 1.2.1. Une application µ : En → K est une forme n-linéaire alternée
sur E si elle vérifie les propriétés suivantes :

(i) µ est linéaire en chacune de ses variables ;

(ii) pour tous v1, . . . , vn ∈ Kn, et tous 1 6 i < j 6 n,

µ(v1, . . . , vi, . . . , vj, . . . vn) = −µ(v1, . . . , vj, . . . , vi, . . . , vn).

On notera ∧nE l’ensemble des formes n-linéaires alternées sur Kn. Étant donné
v = (v1, . . . , vn) ∈ En et σ ∈ Sn, on note

σ · v = (vσ(1), . . . , vσ(n)).

Lemme 1.2.2. Pour des permutations τ, ρ ∈ Sn, on a

(τρ) · v = ρ · (τ · v), v ∈ En. (1.10)
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Démonstration. En effet, si (w1, . . . , wn) = τ · (v1, . . . , vn), on a pour tout i, wi =
vτ(i) d’où wτ−1(i) = vi, de sorte que

wρ(i) = wτ−1(τ(ρ(i))) = v(τρ)(i).

Ainsi

ρ · (τ · v) = ρ · (w1, . . . , wn) = (wρ(1), . . . , wρ(n)) = (v(τρ)(1), . . . , v(τρ)(n)) = (τρ) · v,

d’où l’on tire (1.10).

Proposition 1.2.3. Soit µ une forme n-linéaire alternée sur Kn. Alors pour toute
permutation σ ∈ Sn, et tous v1, . . . , vn ∈ Kn, on a

µ(vσ(1), . . . vσ(n)) = ε(σ)µ(v1, . . . , vn).

Démonstration. Pour tout τ ∈ Sn, on note τ · (v1, . . . , vn) = (vτ(1), . . . , vτ(n)). Le
point (i) de la Définition 1.2.1 implique que si τ =

(
i j

)
est une transposition

avec i < j, on a

µ(τ · (v1, . . . , vn)) = µ(τ · (v1, . . . vi, . . . , vj, . . . vn))

= µ(v1, . . . , vj, . . . , vi, . . . , vn)

= −µ(v1, . . . , vn).

Décomposons à présent σ comme un produit de transpositions τ1 · · · τs. Par (1.10)
on a, si v = (v1, . . . , vn) ∈ (Kn)n,

µ(vσ(1), . . . , vσ(n)) = µ(σ · v)

= µ ((τ1 · · · τs) · v)

= µ (τs · (τ2 · · · τs−1) · v)

= −µ ((τ2 · · · τs−1) · v) .

Par récurrence immédiate on obtient

µ(σ · v) = (−1)sµ(v) = ε(σ)µ(v)

puisque ε(σ) = (−1)s par le corollaire 1.1.20. Ceci conclut la démonstration.

Remarque 1.2.4. Si v = (v1, . . . , vn) ∈ (Kn)n est tel que vi = vj avec i 6= j, alors
µ(v) = 0. En effet, si τ =

(
i j

)
est la transposition qui intervertit i et j, on a

τ · v = v, donc par la proposition précédente, on obtient

µ(v) = µ(τ · v) = −µ(v)

donc µ(v) = 0.
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1.2.2 Le déterminant comme forme n-linéaire alternée

Théorème–Définition 1.2.5. Il existe une unique forme n-linéaire alternée, no-
tée det et appelée déterminant, qui vaut 1 sur la base canonique de Kn. L’ensemble
∧n(Kn) est un K espace vectoriel de dimension 1 généré par det.

Démonstration. Soit v = (v1, . . . , vn) ∈ (Kn)n et µ ∈ An(K). On décompose
chaque vi dans la base canonique e = (ej)16j6n de Kn, en écrivant

vi =
n∑
j=1

vi,jej, 1 6 i 6 n.

Par multilinéarité, on obtient

µ(v) = µ

(
n∑

j1=1

vi,j1ej1 , . . . ,
n∑

jn=1

vi,jnejn

)
=

∑
16j1,...,jn6n

v1,j1 · · · vn,jn µ(ej1 , . . . , ejn).

S’il existe k, ` tels que jk = j`, alors µ(ej1 , . . . , ejn) = 0 par la remarque 1.2.4.
Ainsi, dans la deuxième somme de l’égalité ci-dessus, seuls les termes pour lesquels
j1, . . . , jn sont deux à deux distincts peuvent être non nuls. En notant

Qn = {(j1, . . . , jn) ∈ {1, . . . , n}n : jk 6= j` pour tous k 6= `} ,

on remarque qu’on a une bijection Sn → Qn donnée par

σ 7→ (σ(1), . . . σ(n)).

Ainsi on obtient

µ(v) =
∑

(j1,...,jn)∈Qn

v1,j1 · · · vn,jn µ(ej1 , . . . , ejn)

=
∑
σ∈Sn

v1,σ(1) · · · vn,σ(n) µ(eσ(1), . . . , eσ(n))

=

(∑
σ∈Sn

ε(σ)v1,σ(1) · · · vn,σ(n)

)
µ(e1, . . . , en),

où dans la dernière inéaglité on a utilisé la Proposition 1.2.3, qui implique que
µ(eσ(1), . . . , eσ(n)) = ε(σ)µ(e1, . . . , en). Ainsi, la forme µ est uniquement détermi-
née par la valeur de µ(e). Définissons à présent

det(v) =
∑
σ∈Sn

ε(σ)v1,σ(1) · · · vn,σ(n).
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Il est aisé de voir que det est une forme multilinéaire alternée. En effet, la linéarité
par rapport à chacune des variables est claire. Si τ =

(
k `

)
, notons que

vk,σ(`) = vk,σ(τ(k)) et v`,σ(k) = v`,σ(τ(`))

et vi,σ(i) = vi,σ(τ(i)) si i 6= k, `. On obtient

det(v1, . . . , v`, . . . , vk, . . . , vn) =
∑
σ∈Sn

ε(σ)v1,σ(1) · · · v`,σ(k) · · · vk,σ(`) · · · vn,σ(n)

=
∑
σ∈Sn

ε(σ)v1,σ(τ(1)) · · · v`,σ(τ(`)) · · · vk,σ(τ(k)) · · · vn,σ(τ(n)).

En faisant le changement de variable σ̃ = στ , de sorte que ε(σ̃) = ε(στ) = −ε(σ),
on obtient

det(v1, . . . , v`, . . . , vk, . . . , vn) = −
∑
σ̃∈Sn

ε(σ̃)v1,σ̃(n) · · · vn,σ̃(n) = − det(v).

Ainsi det est alternée, et par ce qui précède tout µ ∈ ∧n(Kn) s’écrit

µ = µ(e) det .

Ceci achève la démonstration.

1.2.3 Déterminant d’une matrice

Si A = (ai,j) ∈ Mn(K) est une matrice carrée de taille n, on pose

det(A) = det(v1(A), . . . , vn(A))

où vj(A) ∈ Kn contient les coefficients de la je colonne de A, de sorte que

vj(A) = (a1,j, . . . , an,j), . . . j = 1, . . . , n.

En particulier, on a

det(A) =
∑
σ∈Sn

ε(σ)
n∏
j=1

aσ(j),j. (1.11)

Proposition 1.2.6. Si tA = (aj,i)16i,j6n est la transposée de A, on a

det(tA) =
∑
σ∈Sn

ε(σ)
n∏
j=1

aj,σ(j) = det(A).
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Démonstration. La première égalité est claire. La deuxième découle du change-
ment de variable k = σ(j) dans le produit de (1.11), qui donne

det(A) =
∑
σ∈Sn

ε(σ)
n∏
j=1

aσ(j),j =
∑
σ∈Sn

ε(σ)
n∏
k=1

ak,σ−1(j).

En faisant le changement de variable σ̃ = σ−1, on obtient ε(σ̃) = ε(σ), d’où

∑
σ∈Sn

ε(σ)
n∏
k=1

ak,σ−1(j) =
∑
σ̃∈Sn

ε(σ̃)
n∏
k=1

ak,σ̃(j)

ce qui achève la démonstration.

Proposition 1.2.7. Soit A ∈ Mn(K) une matrice carrée. Le déterminant vérifie
les propriétés suivantes.
(i) Si deux colonnes de A sont égales, alors detA = 0.
(ii) Si deux colonnes de A sont interverties, son déterminant change de signe.
(iii) Si on multiplie par λ ∈ K une des colonnes de A, son déterminant est

multiplié par λ.
(iv) Si une colonne est combinaison linéaire des autres colonnes, alors detA = 0.

Remarque 1.2.8. La proposition précédente reste vraie si on remplace le mot
“colonne” par “ligne”, ce qui découle de la Proposition 1.2.6.

Démonstration. Ces propriétés découlent immédiatement du fait que det est une
forme n-linéaire alternée.

Soit E = Kn. Si u ∈ L(E) est un endomorphisme de E, on note u⊕n l’endo-
morphisme u⊕n : En → En défini par

u⊕n(v1, . . . , vn) = (u(v1), . . . , u(vn)), v1, . . . , vn ∈ E.

Théorème 1.2.9. Si A = (ai,j)16i,j6n ∈ Mn(K) est la matrice de u dans la base
canonique de E, on a

det(u(v1), . . . , u(vn)) = det(A) det(v1, . . . , vn), v1, . . . , vn ∈ E.

Démonstration. On définit µ : En → En par (v1, . . . , vn) 7→ det(u(v1), . . . , u(vn)).
Alors µ est une forme multilinéaire alternée, ce qui découle de la linéarité de u
et du caractère multilinéaire alterné de det. Par le Théorème-Définition 1.2.5, il
existe un scalaire λ ∈ K tel que

µ = λ det : En → K.
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En appliquant ceci à (v1, . . . , vn) = (e1, . . . , en), on obtient

µ(e1, . . . , en) = det(u(e1), . . . , u(en)) = λ.

Cependant on a, par définition de A,

u(ej) = (a1,j, . . . , an,j), j = 1, . . . , n.

Ceci implique immédiatement que λ = det(u(e1), . . . , u(en)) = detA. On a donc
obtenu µ = det(A) det, ce qui conclut la démonstration.

Théorème 1.2.10. Soient A et B deux matrices de Mn(K). Alors

det(AB) = det(A) det(B).

Démonstration. Soient u, v les endomorphismes de E canoniquement associés à
A et B, respectivement. Alors u ◦ v est canoniquement associé à u ◦ v. Soient
v1, . . . , vn ∈ E. On applique le Théorème 1.2.9 à l’endomorphisme u ◦ v, ce qui
donne

det((u ◦ v)(v1), . . . , (u ◦ v)(vn)) = det(AB) det(v1, . . . , vn).

On applique maintenant le Théorème 1.2.9 à l’endomorphisme u, ce qui donne, si
wi = v(vi) pour i = 1, . . . , n,

det(u(w1), . . . , u(wn)) = det(A) det(w1, . . . , wn).

Enfin le Théorème 1.2.9 appliqué à l’endomorphisme v donne

det(w1, . . . , wn) = det(v(v1), . . . , v(vn)) = det(B) det(v1, . . . , vn).

En prenant vi = ei, on obtient det(v1, . . . , vn) = det(e1, . . . , en), de sorte que les
trois égalités précédentes donnent

det(AB) = det((u ◦ v)(e1), . . . , (u ◦ v)(en))

= det(u(w1), . . . , u(wn))

= det(A) det(w1, . . . , wn)

= det(A) det(B),

ce qu’on souhaitait démontrer.

On déduit immédiatement du Théorème 1.2.10 le résultat suivant.

Corollaire 1.2.11 (Invariance du déterminant par similitude). Soit P ∈ GLn(K)
une matrice inversible et A ∈ Mn(K). Alors

det(P−1AP ) = det(A).
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Démonstration. Il suffit d’appliquer le Théorème 1.2.10 avec A remplacée par AP
et B remplacée par P−1.

Une deuxième conséquence porte sur l’inversibilité d’une matrice.

Corollaire 1.2.12. Une matrice A ∈ Mn(K) est inversible si et seulement si
detA 6= 0.

Démonstration. Si A est inversible, alors

1 = det(In) = det(AA−1) = det(A) det(A−1),

donc detA 6= 0. Si A n’est pas inversible, alors il existe une combinaison linéaire
non triviale de ses colonnes qui est nulle. Par la Proposition 1.2.7, on obtient
detA = 0. Ceci conclut la démonstration.

1.2.4 Développement par rapport aux lignes et aux co-
lonnes

Théorème 1.2.13 (Développement du déterminant par rapport à une ligne ou
une colonne). Soit A = (ai,j) ∈ Mn(K) une matrice. Alors pour tout i = 1, . . . , n
on a

det(A) =
n∑
j=1

(−1)i+jai,j∆i,j =
n∑
j=1

(−1)i+jaj,i∆j,i (1.12)

où ∆i,j est le déterminant de la sous-matrice de A obtenue en retirant la i-eme
ligne et la j-eme colonne, soit

∆i,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1,j−1 a1,j+1 · · · a1,n
...

...
...

...
ai−1,1 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

ai+1,1 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n
...

...
...

...
an,1 · · · a1,j−1 a1,j+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (1.13)

Démonstration. On note `i(A) = (ai,1, . . . , ai,n) ∈ Kn la i-ième ligne de A. En
écrivant `i(A) =

∑n
j=1 ai,jej où (ej) est la base canonique de Kn, on obtient via

la linéarité de det par rapport à son i-ième facteur,

det(A) = det(`1(A), . . . , `n(A)) =
n∑
j=1

ai,jDi,j (1.14)
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où pour tous i, j, avec Di,j = det(Mi,j), où

Mi,j =



a1,1 · · · a1,j−1 a1,j a1,j+1 · · · a1,n
...

...
...

...
...

ai−1,1 · · · ai−1,j−1 ai−1,j ai−1,j+1 · · · ai−1,n

0 · · · 0 1 0 · · · 0
ai+1,1 · · · ai+1,j−1 ai+1,j ai+1,j+1 · · · ai+1,n

...
...

...
...

...
an,1 · · · an,j−1 an,j an,j+1 · · · an,n


Pour tout k 6= i, on retire ak,j fois la i-ième ligne de Mi,j à la k-ième ligne de Mi,j,
ce qui ne modifie pas son déterminant, de sorte que

Di,j =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1,j−1 0 a1,j+1 · · · a1,n
...

...
...

...
...

ai−1,1 · · · ai−1,j−1 0 ai−1,j+1 · · · ai−1,n

0 · · · 0 1 0 · · · 0
ai+1,1 · · · ai+1,j−1 0 ai+1,j+1 · · · ai+1,n

...
...

...
...

...
an,1 · · · an,j−1 0 an,j+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Après i− 1 échanges de lignes et j − 1 échanges de colonnes, on obtient

Di,j = (−1)i−1(−1)j−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · · · · · · · · · · 0
0 a1,1 · · · a1,j−1 a1,j+1 · · · a1,n
...

...
...

...
...

... ai−1,1 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

... ai+1,1 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n

...
...

...
...

...
0 an,1 · · · an,j−1 an,j+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Nous aurons besoin du résultat intermédiaire suivant.

Lemme 1.2.14. Soient B = (bi,j)16i,j6n−1, c1, . . . , cn−1 ∈ K et

A =

á
1 c1 · · · cn−1

0 b1,1 · · · b1,n−1
...

...
...

0 bn−1,1 · · · bn−1,n−1

ë
.

Alors detA = detB.
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Démonstration du Lemme 1.2.14. On calcule

detA =
∑
σ∈Sn

ε(σ)aσ(1),1 · · · aσ(n),n.

On a aσ(1),1 = 0 si σ(1) 6= 1. Si σ(1) = 1 alors σ(j) 6= 1 pour tout j = 2, . . . , n, de
sorte que

aσ(1),1 · · · aσ(n),n = bσ(2)−1,2−1 · · · bσ(n)−1,n−1

puisque aσ(1),1 = a1,1 = 1, et ai,j = bi−1,j−1 si i, j > 1. Dès lors

det(A) =
∑
σ∈Sn
σ(1)=1

ε(σ)bσ(2)−1,2−1 · · · bσ(n)−1,n−1

où la somme porte sur les permutations σ vérifiant σ(1) = 1. Notons qu’on a une
bijection

Ψ : {σ ∈ Sn : σ(1) = 1} → Sn−1, σ 7→ σ̂,

où σ̂ ∈ Sn−1 est définie par

σ̂(j) = σ(j + 1)− 1, j = 1, . . . , n− 1.

Alors on a ε(σ̂) = ε(σ), ce qui se voit aisément en décomposant σ en produit de
cycles à supports disjoints. En faisant le changement de variables σ̂ = Ψ(σ), on
obtient donc

det(A) =
∑

σ̂∈Sn−1

ε(σ̂)
n−1∏
j=1

bσ̂(j),j = det(B),

ce qui achève la démonstration du lemme.

Le lemme donne alors

Di,j = (−1)i+j−2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,1 · · · a1,j−1 a1,j+1 · · · a1,n
...

...
...

...
ai−1,1 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

ai+1,1 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n
...

...
...

...
an,1 · · · a1,j−1 a1,j+1 · · · an,n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)i+j∆i,j,

et avec (1.14) on obtient bien la première égalité de (1.12). La deuxième égalité
se déduit immédiatement de la première égalité appliquée à tA. La démonstration
du Théorème 1.2.13 est complète.

Nous donnons une application cruciale du résultat précédent.
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Corollaire 1.2.15. Le déterminant d’une matrice triangulaire supérieure est
égal au produit de ses éléments diagonaux.

Démonstration. On montre le résultat par récurrence sur la dimension. Pour n =
1, le résultat est trivial. Soit maintenant n > 2 et

A =

á
a1,1 · · · · · · a1,n

0
. . . ...

... . . . . . . ...
0 · · · 0 an,n

ë
une matrice triangulaire supérieure. En développant le déterminant par rapport
à la première colonne de A, on obtient

det(A) =
n∑
i=1

(−1)i+1ai,1∆i,1.

Puisque ai,1 = 0 pour i > 2, il vient

det(A) = a1,1∆1,1 avec ∆1,1 =

∣∣∣∣∣∣∣∣∣∣
a2,2 · · · · · · a2,n

0
. . . ...

... . . . . . . ...
0 · · · 0 an,n

∣∣∣∣∣∣∣∣∣∣
.

Par hypothèse de récurrence, on a ∆1,1 = a2,2 · · · an,n d’où det(A) = a1,1 · · · an,n.
La récurrence est établie et le corollaire est démontré.

1.2.5 Déterminants par blocs

Théorème 1.2.16 (Déterminant d’une matrice triangulaire supérieure par blocs).
Soient n > 1 et Ak ∈ Mnk(K), k = 1, . . . , r des matrices avec n1 + · · · + nr = n.
Soit A ∈ Mn(K) une matrice par blocs de la forme

A =

à
A1 ? ? ?

0
. . . ? ?

... . . . . . . ?

0 · · · 0 Ar

í
où les ? représentent des matrices quelconques. Alors on a

detA = det(A1) · · · det(Ar).
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Démonstration. Par récurrence immédiate, il suffit de prouver le théorème pour
r = 2, de sorte qu’on supposer que A est de la formeÅ

A1 B
0 A2

ã
avec Aj ∈ Mnk(K) pour k = 1, 2 et B ∈ Mn1,n2(K). Soit E = Kn1 . On considère
l’application µ1 : En1 → K donnée par

µ1(v) = det

Å
A1(v) B

0 A2

ã
, v = (v1, . . . , vn1) ∈ En1 ,

où A1(v) est la matrice dont la i-ième colonne a pour coefficients ceux de vi,
pour i = 1, . . . , n1. Alors par n-linéarité du déterminant, µ1 est une forme n1-
linéaire alternée sur E. Par conséquent, le Théorème 1.2.5 implique qu’il existe
une constante λ qui dépend a priori de B et de A2, telle que

µ1(v) = λ det(v), v ∈ En1
1 . (1.15)

En évaluant sur la base canonique e de E, on obtient

λ = µ1(e) = det

Å
In1 B
0 A2

ã
.

Une récurrence immédiate combinée au Lemme 1.2.14 donne que le déterminant
de la matrice ci-dessus coincide avec detA2, de sorte que

λ = detA2.

On note maintenant ci(A) ∈ Kn1 le vecteur dont les coefficients sont ceux de la
i-ième colonne de A. En notant c = (c1(A), . . . , cn1(A)) on a A1(c) = A1 et donc
par (1.15) on obtient

µ1(c) = det

Å
A1 B
0 A2

ã
= λ det(c) = det(A2) det(c).

Or det(c) = detA1 par définition du déterminant de A1, ce qui conclut la démons-
tration.

1.2.6 Formule de la comatrice

Définition 1.2.17 (Comatrice). Pour toute matrice A ∈ Mn(K), on note com(A)
la matrice des co-facteurs de A, c’est-à-dire la matrice dont le coefficient en place
(i, j) est (−1)i+j∆i,j, où ∆i,j est défini dans (1.13).
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Théorème 1.2.18 (Formule de la comatrice). Pour toute matrice A = (ai,j) ∈
Mn(K),

A t com(A) = det(A)In.

En particulier si A est inversible alors

A−1 =
t com(A)

detA
.

Démonstration. On pose B = t com(A) et on note bi,j les coefficients de B, de
sorte que bi,j = (−1)j+i∆j,i. Alors le coefficient en place (i, j) de AB est donné
par

(AB)i,j =
n∑
k=1

ai,kbk,j =
n∑
k=1

(−1)k+jai,k∆j,k. (1.16)

En particulier, si i = j, le Théorème 1.2.13 donne

(AB)i,i =
n∑
k=1

(−1)k+iai,k∆i,k = det(A). (1.17)

Fixons à présent i 6= j. On considère la matrice Ã = (ãk,`) obtenue en remplaçant
la j-ième ligne de A par la i-ième ligne de A. Alors Ã a deux lignes égales, donc
det Ã = 0. Mais en développement le déterminant par rapport à la j-ième ligne,

0 = det Ã =
n∑
k=1

(−1)j+kãj,k∆̃j,k

où ∆̃j,k est le déterminant de la matrice réduite de Ã en enlevant la j-ième ligne
et la k-ième colonne. Puisque la `-ième ligne de Ã est la même que la `-ième ligne
de A pour tout ` 6= j, on a ∆̃j,k = ∆j,k. D’autre part on a ãj,k = ai,k puisque
la j-ième ligne de Ã coincide avec la i-ième ligne de A. En combinant ceci avec
(1.16) on obtient, si i 6= j,

(AB)i,j =
n∑
k=1

(−1)j+kai,k∆j,k =
n∑
k=1

(−1)j+kãj,k∆̃j,k = 0.

En se rappelant de (1.17), on obtient bien A t com(A) = det(A)In.
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2.1 Rappels

Si f ∈ L (E) et k ∈ N, on note fk = id si k = 0 et fk = f ◦ · · · ◦ f (k termes)
si k > 1.

2.1.1 Valeurs propres et vecteurs propres

Définition 2.1.1. Soit f un endomorphisme de E.
(i) Un scalaire λ ∈ K est une valeur propre de f s’il existe x ∈ E \ {0} tel que

f(x) = λx.
(ii) Un tel vecteur x est appelé vecteur propre de f pour la valeur propre λ.
(iii) L’espace propre de f associé à la valeur propre λ est le sous-espace vectoriel

Eλ = ker (f − λ id) = {x ∈ E : f(x) = λx} .

(iv) Le spectre sp(f) de f est l’ensemble de ses valeurs propres,

sp(f) = {λ ∈ K : ∃x ∈ E \ {0}, f(x) = λx}.

(v) Si λ ∈ sp(f), le nombre mgeom
f (λ) = dimEλ est appelé sa multiplicité algé-

brique.

Un résultat fondamental est que les espaces propres associés à des valeurs
propres distinctes sont en somme directe.

Lemme 2.1.2. Soient λ1, . . . , λr des valeurs propres de f deux à deux distinctes,
et x1, . . . , xr des vecteurs propres associés. Alors la famille (x1, . . . , xr) est libre.

Démonstration. On raisonne par récurrence sur r. Le lemme est évident vrai pour
r = 1 car tout vecteur propre est non nul. Supposons le lemme vrai pour un
r > 1, et donnons nous x1, . . . , xr+1 une famille de vecteurs propres de f associés
à des valeurs propres deux à deux distinctes λ1, . . . , λr+1. Montrons que la famille
(x1, . . . , xr+1) est libre ; soient α1, . . . , αr+1 ∈ K tels que

r+1∑
j=1

αjxj = 0. (2.1)

En appliquant f à l’égalité précédente, on obtient

r+1∑
j=1

λjαjxj = 0. (2.2)
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En multipliant (2.1) par λr+1 et en retranchant (2.2), on obtient
r∑
j=1

(λj − λr+1)αjxj = 0.

Par hypothèse de récurrence, la famille (x1, . . . , xr) est libre ; ainsi, puisqu’on a
λj − λr+1 6= 0 pour tout j = 1, . . . , r on obtient α1 = · · · = αr = 0 et (2.1) donne
αr+1 = 0. Il suit que (x1, . . . , xr+1) est libre et la récurrence est établie.

Remarque 2.1.3. Le résultat précédent implique directement que le spectre de
f est de cardinal au plus n.

Définition 2.1.4. Soit f un endomorphisme de E. On dit que f est diagonalisable
(resp. trigonalisable) s’il existe une base de E constituée de vecteurs propres pour
f , i.e. dans laquelle la matrice de f est diagonale (resp. triangulaire supérieure).

Ces notions existent aussi pour les matrices.

Définition 2.1.5. Soit A ∈ Mn(K) une matrice. On dit que A est diagonalisable
(resp. trigonalisable) s’il existe P ∈ GLn(K) telle que P−1AP est diagonale (resp.
triangulaire supérieure).

Remarque 2.1.6. Un endomorphisme f ∈ L (E) est diagonalisable (resp. trigo-
nalisable) si, et seulement si, sa matrice dans n’importe quelle base est diagona-
lisable (resp. trigonalisable).

Proposition 2.1.7 (Critère de diagonalisation, I). Un endomorphisme f ∈ L (E)
est diagonalisable si, et seulement si, on a la somme directe

E =
⊕

λ∈sp(f)

Eλ

Démonstration. Supposons f diagonalisable. Soit β = (e1, . . . , en) une base de
E formée de vecteurs propres de f . Notons sp(f) = {λ1, . . . , λr}, et pour tout
j = 1, . . . , r on pose

nj = ]{1 6 ` 6 n : e` ∈ Eλj}.
Alors on a nj 6 dimEλj pour tout j et

n = n1 + · · ·+ nr 6
r∑
j=1

dimEλj = dim (Eλ1 ⊕ · · · ⊕ Eλr) ,

où on a utilisé le Lemme 2.1.2 pour la dernière égalité. Il suit que

E = Eλ1 ⊕ · · · ⊕ Eλr .

Réciproquement, supposons qu’on a la somme directe précédente, et prenons β
une base adaptée à la décomposition. Alors la matrice de f est diagonale dans
cette base puisque tout vecteur de β appartient à un des espaces propres Eλj .
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2.1.2 Polynôme caractéristique

Définition 2.1.8. Le polynôme caractéristique d’une matrice carrée A ∈ Mn(K)
est l’application χA : K → K définie par

χA(λ) = det(λIn − A), λ ∈ K.

Proposition 2.1.9. Le polynôme caractéristique d’une matrice est une appli-
cation polynomiale. Plus précisément, pour toute matrice A ∈ Mn(K), il existe
a0, . . . , an ∈ K tels que

χA(λ) =
n∑
k=0

akλ
k, λ ∈ K.

De plus, on a les expressions

a0 = (−1)n detA, an−1 = − trA et an = 1.

Démonstration. Pour A = (ai,j) ∈ Mn(K) on utilise la formule du déterminant

det(λIn − A) =
∑
σ∈Sn

ε(σ)
n∏
j=1

(
λδj,σ(j) − aj,σ(j)

)
.

Ici Sn est l’ensemble des permutations de {1, . . . , n} et δi,j est le symbole de
Kronecker donné par δi,j = 1 si i = j et δi,j = 0 sinon. L’expression de droite est
manifestement polynomiale en la variable λ. En écrivant χA(λ) = a0 + · · ·+ anλ

n,
on obtient

a0 = det(−A) = (−1)n detA.

D’autre part, si σ ∈ Sn est une permutation différente de la permutation triviale,
le produit

Pσ(λ) =
n∏
j=1

(
λδj,σ(j) − aj,σ(j)

)
est un polynôme en λ de degré au plus n − 2 puisque toute permutation non
triviale contient un cycle de longueur au moins 2. Si σ = e est la permutation
triviale, un calcul immédiat donne

Pe(λ) =
n∏
j=1

(λ− aj,j) = λn − λn−1

n∑
j=1

aj,j +Qe(λ)

où Qe est un polynôme de degré au plus n− 2. Par conséquent on obtient que

χA(λ) = λn − λn−1 trA+Qe(λ) +
∑

σ∈Sn\{e}

ε(σ)Pσ(λ).
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Par ce qui précède, Qe(λ) +
∑

σ∈Sn\{e} ε(σ)Pσ(λ) est un polynôme en λ de degré
au plus n− 2 et on en déduit immédiatement les expressions annoncées pour les
coefficients an et an−1.

Corollaire 2.1.10. Si A ∈ M2(K) on a

χA(λ) = λ2 − tr(A)λ+ det(A).

Le polynôme caractéristique est un invariant de similitude, comme le montre
la proposition suivante.

Proposition 2.1.11. Si A ∈ Mn(K) et P ∈ GLn(K) on a χP−1AP = χA.

Démonstration. En effet, le déterminant est un invariant de similitude, d’où

det(λIn − P−1AP ) = det
(
P−1(λIn − A)P

)
= det(λIn − A),

ce qui montre la proposition.

Ainsi, le polynôme caractéristique χA ne dépend que de la classe de conjugaison
de A, ce qui suggère la définition suivante.

Définition 2.1.12. Le polynôme caractéristique d’un endomorphisme f ∈ L (E)
est le polynôme caractéristique de la matrice représentant f dans n’importe quelle
base de E.

Proposition 2.1.13. Pour tout f ∈ L (E), on a λ ∈ sp(f) si, et seulement si, λ
est une racine de χf .

Démonstration. En effet, on a λ ∈ sp(f) si, et seulement si λ id−f n’est pas
inversible ce qui équivaut à det(λ id−f) = 0 ou encore χf (λ) = 0.

Définition 2.1.14. Soit f ∈ L (E). La multiplicité algébrique malg
f (λ) d’une

valeur propre λ ∈ sp(f) est la multiplicité de λ comme racine de χf , c’est-à-dire

malg
f (λ) = max

{
k ∈ N : (X − λ)k divise χf (X)

}
.

Proposition 2.1.15. Pour tout f ∈ L (E) et λ ∈ sp(f), on a

1 6 malg
f (λ) 6 dimEλ.

Démonstration. Soit m = dimEλ. On a bien sûr 1 6 m puisque λ ∈ sp(f). Soit
(e1, . . . , em) une base de Eλ, que l’on complète en une base β de E. La matrice de
f dans la base β est alors de la forme

[f ]β =

Å
Im A
0 B

ã
.
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Par conséquent on a

[X id−f ]β =

Å
(X − λ)Im −A

0 XIn−m −B

ã
et il suit que

χf (X) = det[X id−f ]β = (X − λ)m det(XIn−m −B) = (X − λ)mχB(X).

En particulier (X − λ)m divise χf et donc m 6 malg
f (λ) par définition de malg

f (λ).

Théorème 2.1.16 (Critère de diagonalisabilité, II). Un endomorphisme f ∈
L (E) est diagonalisable si, et seulement si, les deux propriétés suivantes sont
vérifiées :
(i) χf est scindé sur K ;
(ii) pour toute valeur propre λ ∈ sp(f), on a malg

f (λ) = mgeom
f (λ).

Démonstration. Soit f ∈ L (E) et notons sp(f) = {λ1, . . . , λr} où les λj sont
deux à deux distincts. Supposons f ∈ L (E) diagonalisable. Alors E =

⊕r
j=1Eλj

par la Proposition 2.1.7. En choisissant une base β adaptée à cette décomposition,
la matrice [f ]β est diagonale ; plus précisément on a

[f ]β =

Ö
λ1Im1 0

. . .
0 λrImr

è
où mj = dimEλj pour j = 1, . . . , r. Il suit que χf =

∏r
j=1(X − λj)mj est scindé,

et comme les λj sont deux à deux distincts, on a immédiatement mj = malg
f (λj).

Réciproquement, supposons (i) et (ii). Alors on a

dim(Eλ1 ⊕ · · · ⊕ Eλr) = dimEλ1 + · · ·+ dimEλr

= malg
f (λ1) + · · ·+malg

f (λr)

= n.

La première égalité vient du fait que les Eλj sont en somme directe, la deuxième
découle du point (ii) et enfin la troisième résulte du point (i). Ainsi on a montré
que E = Eλ1⊕· · ·⊕Eλr et donc f est diagonalisable par la Proposition 2.1.7.

Définition 2.1.17 (Matrice compagnon d’un polynôme unitaire). Soit P ∈ K[X]
un polynôme unitaire de degré n, que l’on écrit

P = Xn +
n−1∑
k=0

akX
k.
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La matrice compagnon de P est la matrice

C(P ) =

â
0 · · · · · · 0 −a0

1 0 · · · 0 −a1

0
. . . . . . ...

...
... . . . . . . 0

...
0 · · · 0 1 −an−1

ì
∈ Mn(K).

Proposition 2.1.18. Pour tout polynôme P ∈ K[X] de degré n, on a χC(P ) = P .

Démonstration. On a

χC(P ) =

∣∣∣∣∣∣∣∣∣∣∣∣

X · · · · · · 0 a0

−1 X · · · 0 a1

0
. . . . . . ...

...
... . . . . . . X

...
0 · · · −1 X + an−1

∣∣∣∣∣∣∣∣∣∣∣∣
.

Pour tout j = 2, . . . , n, on ajoute la je ligne multipliée par Xj−1 à la première ;
on obtient

χC(P ) =

∣∣∣∣∣∣∣∣∣∣∣∣

0 · · · · · · 0 P (X)
−1 X · · · 0 a1

0
. . . . . . ...

...
... . . . . . . X

...
0 · · · −1 X + an−1

∣∣∣∣∣∣∣∣∣∣∣∣
.

En développant par rapport à la première ligne, il vient

χC(P ) = (−1)n+1P (X)

∣∣∣∣∣∣∣∣∣∣
−1 X · · · 0

0
. . . . . . 0

... . . . . . . X
0 · · · 0 −1

∣∣∣∣∣∣∣∣∣∣
= P (X),

ce qui est bien le résultat voulu.

2.1.3 Diagonalisation, trigonalisation

Théorème 2.1.19 (Critère de trigonalisabilité). Un endormorphisme f ∈ L (E)
est trigonalisable sur K si, et seulement si, χf est scindé sur K.
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On rappelle qu’un polynôme P ∈ K[X] est scindé sur K si, et seulement si, il
existe a, α1, . . . , αn ∈ K tels que

P = a
n∏
k=1

(X − αk).

Puisque tout polynôme est scindé sur C par le théorème fondamental de l’algèbre,
on obtient immédiatement le corollaire suivant.

Corollaire 2.1.20. Soit E est un C-espace vectoriel de dimension finie. Alors
tout endomorphisme de E est trigonalisable.

Démonstration du Théorème 2.1.19. En vertu de la remarque 2.1.6, il suffit de
montrer le résultat pour les matrices. Supposons queA ∈ Mn(K) soit trigonalisable
sur K. Alors il existe P ∈ GLn(K) et λ1, . . . , λn ∈ K tels que

P−1AP =

Ö
λ1 ?

. . .
0 λn

è
.

Ainsi on obtient que

χA = χP−1AP = det(XIn − P−1AP ) = (X − λ1) · · · (X − λn)

est scindé sur K.
On montre la réciproque par récurrence sur n. Elle est claire pour n = 1.

Supposons-la vraie pour un certain n > 1, et soit A ∈ Mn+1(K) telle que χA est
scindé sur K. En particulier, χA admet une racine λ1. Ainsi λ1 est valeur propre
de A par la Proposition 2.1.13. Soit x ∈ Mn+1,1(K) un vecteur propre associé, que
l’on complète en une base β = (x, e2, . . . , en+1) de Mn+1,1(K). Si P est la matrice
de passage de la base canonique de Mn+1,1(K) à β, on a que P−1AP est de la
forme

P−1AP =

Å
λ1 `
0 B

ã
où ` ∈ M1,n(K) et B ∈ Mn(K). En particulier on obtient

χA = χP−1AP = (X − λ1)χB.

Comme χA est scindé sur K, il en est de même pour χB et par hypothèse de
récurrence, il existe Q ∈ GLn(K) telle que Q−1BQ est triangulaire supérieure. En

notant Q̃ =

Å
1 0
0 Q

ã
, on a Q̃−1 =

Å
1 0
0 Q−1

ã
et la matrice

Q̃−1P−1APQ̃ =

Å
1 0
0 Q−1

ãÅ
λ1 `
0 B

ãÅ
1 0
0 Q

ã
=

Å
1 `Q
0 Q−1BQ

ã
est triangulaire supérieure. La récurrence est établie.
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2.2 Polynômes d’endomorphismes

2.2.1 Opérations sur les endomorphismes

On commence par introduire la notion de polynômes d’endomorphismes. On
rappelle qu’on a les opérations suivantes pour λ ∈ K et f, g ∈ L (E) :
• le produit extérieur λf ∈ L (E), donné par

(λf)(x) = λf(x), x ∈ E ;

• la somme f + g ∈ L (E), donnée par

(f + g)(x) = f(x) + g(x), x ∈ E ;

• la composition f ◦ g ∈ L (E), donnée par

(f ◦ g)(x) = f(g(x)), x ∈ E.

Pour f ∈ L (E) et k ∈ N, l’endomorphisme fk ∈ L (E) est défini par les relations
de récurrence

f 0 = idE et fk+1 = f ◦ fk, k ∈ N.

Autrement dit, pour tout k > 1 on a

fk = f ◦ · · · ◦ f︸ ︷︷ ︸
k fois

.

Notons qu’on a
fk+` = fk ◦ f ` = f ` ◦ fk, k, ` ∈ N.

Définition 2.2.1 (Polynôme d’endomorphisme). Soit P =
∑N

k=0 akX
k ∈ K[X]

et f ∈ L (E). Alors P (f) est défini par

P (f) =
N∑
k=0

akf
k ∈ L (E).

On dira qu’un endomorphisme g ∈ L (E) est un polynôme en f s’il existe un
polynôme Q ∈ K[X] tel que g = Q(f).

Remarque 2.2.2. Cette notion est en adéquation avec celle des polynômes de
matrices. En effet si f ∈ L (E), P =

∑
k akX

k ∈ K[X] et β est une base de E, on
a

[P (f)]β = P ([f ]β),
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où pour toute matrice A, la matrice P (A) =
∑

k akA
k est définie à l’aide du

produit matriciel. En effet, cela résulte de ce qu’on a

[f ◦ g]β = [f ]β[g]β

pour tous f, g ∈ L (E).

Les proposition suivantes seront utiles. Leurs démonstrations sont de simples
vérifications et sont laissées en exercice.

Proposition 2.2.3. Soient P,Q ∈ K[X], λ ∈ K et f ∈ L (E). Alors

(i) (P +Q)(f) = P (f) +Q(f) ;
(ii) (PQ)(f) = P (f) ◦Q(f) ;
(iii) (λP )(f) = λP (f).

Proposition 2.2.4. Soient f, g ∈ L (E) tels que f ◦ g = g ◦ f . Alors pour tous
P,Q ∈ K[X] on a

P (f) ◦Q(g) = Q(g) ◦ P (f).

2.2.2 Lemme des noyaux

Un résultat très utile pour la réduction des endomorphismes est le suivant.

Théorème 2.2.5 (Lemme des noyaux). Soit f ∈ L (E), P1, . . . , Pr ∈ K[X] des
polynômes deux à deux premiers entre eux et P = P1 · · ·Pk. Alors on a

kerP (f) = kerP1(f)⊕ · · · ⊕ kerPr(f).

Démonstration. On montre d’abord le résultat pour r = 2, le cas général s’obte-
nant par récurrence. Soient donc P1, P2 ∈ K[X] deux polynômes premiers entre
eux et P = P1P2. On note Fj = kerPj(f) pour j = 1, 2 et F = kerP (f). Remar-
quons d’abord que F1, F2 ⊂ F d’où F1 +F2 ⊂ F . Par ailleurs, soient xj ∈ Fj pour
j = 1, 2, tels que

x1 + x2 = 0. (2.3)

Comme les Pj sont premiers entre eux, il existe des polynômes Q1, Q2 ∈ K[X] tels
que P1Q1 + P2Q2 = 1, ce qui implique

(P1Q1)(f) + (P2Q2)(f) = idE . (2.4)

Notons que x1 ∈ F1 et donc (P1Q1)(f)(x1) = 0 ; ainsi (2.3) et (2.4) impliquent

0 = (P1Q1)(f)(x1 + x2) = x2 − (P2Q2)(f)(x2) = x2.
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Ainsi x2 = 0 et x1 = 0 : on a montré que F1 et F2 sont en somme directe. Il reste
à montrer que F ⊂ F1 + F2. Pour x ∈ F , on utilise (2.4) pour écrire

x = (P1Q1)(f)(x) + (P2Q2)(f)(x) = x2 + x1.

On a x2 ∈ F2 car P2(f)(x2) = (P2P1Q1)(f)(x) = 0 puisque x ∈ F . De même
x1 ∈ F1 et le résultat est démontré pour r = 2.

On suppose maintenant le résultat vrai pour un certain r > 2 et on se donne
P1, . . . , Pr+1 des polynômes deux à deux premiers entre eux. On pose

P̃1 = P1 et P̃2 = P2 · · ·Pr+1.

Alors P̃1 et P̃2 sont premiers entre eux, donc par le résultat montré pour r = 2
on obtient kerP (f) = ker(P̃1P̃2)(f) = ker P̃1(f) ⊕ ker P̃2(f). D’autre part, les
polynômes P2, . . . , Pr+1 sont deux à deux premiers entre eux, donc par hypothèse
de récurrence,

ker P̃2(f) = ker(P2 . . . Pr+1)(f) = kerP2(f)⊕ · · · kerPr+1(f).

La récurrence est établie.

Remarque 2.2.6. Soit f ∈ L (E) et λ1, . . . , λr ∈ K des valeurs propres de f , deux
à deux distinctes. Alors le lemme des noyaux appliqué à P = (X−λ1) · · · (X−λr)
permet de montrer que les espaces propres Eλ1 , . . . , Eλr sont en somme directe :
on a retrouvé la Proposition 2.1.2.

Corollaire 2.2.7. Soit f ∈ L (E). Si P ∈ K[X] est scindé à racines simples et
vérifie P (f) = 0 alors f est diagonalisable.

Démonstration. Comme P est scindé à racines simples, on peut écrire

P =
r∏
j=1

(X − λj)

pour des λ1, . . . , λr ∈ K deux à deux distincts. En appliquant le lemme des noyaux
aux polynômes X − λj, on obtient

E = kerP (f) =
r⊕
j=1

ker(f − λj id)

donc E est somme des sous-espaces propres de f , donc f est diagonalisable.
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2.2.3 Polynôme minimal

Nous introduisons à présent la notion de polynôme annulateur.

Définition 2.2.8 (Polynôme annulateur). Soit P ∈ K[X] et f ∈ L (E). On dit
que P est un polynôme annulateur de f (ou plus simplement que P annule f) si
on a

P (f) = 0.

On notera I(f) ⊂ L (E) l’ensemble des polynômes annulateurs de f .

Remarque 2.2.9 (Existence d’un polynôme annulateur). Il existe toujours un po-
lynôme annulateur non nul pour un endomorphisme f ∈ L (E). En effet, L (E) est
un espace vectoriel de dimension n2 et par conséquent la famille (idE, f, · · · , fn

2
)

est liée ; par suite il existe a0, . . . , an2 ∈ K non tous nuls tels que

a0 idE + · · ·+ an2fn
2

= 0.

Autrement dit, le polynôme
∑n2

k=0 akX
k annule f .

Proposition 2.2.10 (Propriétés de I(f)). Soit f ∈ L (E). Alors
(i) I(f) est sous-un espace vectoriel de K[X] ;
(ii) pour tout P ∈ I(f) et tout Q ∈ K[X], PQ ∈ I(f) — on dit que I(f) est

un idéal ;
(iii) si P ∈ I(f) et λ ∈ sp(f) alors P (λ) = 0.

Démonstration. Pour le point (i), on remarque que pour tout λ ∈ K et tous
P,Q ∈ I(f), on a (λP + Q)(f) = λP (f) + Q(f) = 0 donc λP + Q ∈ I(f). Pour
le point (ii), on remarque que (PQ)(f) = P (f) ◦Q(f) = 0. Enfin pour le dernier
point, on prend P =

∑d
k=0 akX

k ∈ I(f) et λ ∈ sp(f). Si x ∈ E vérifie f(x) = λx,
avec x non nul, on a fk(x) = λkx pour tout k, d’où

0 = P (f)(x) =
d∑

k=0

akf
k(x) =

d∑
k=0

akλ
kx = P (λ)x

ce qui implique P (λ) = 0.

Le théorème suivant caractérise l’idéal I(f).

Théorème–Définition 2.2.11. Soit f ∈ L (E). Il existe un unique polynôme
unitaire µf ∈ K[X] tel que

I(f) = µf ·K[X] = {µf · P : P ∈ K[X]} .

Le polynôme µf est le polynôme minimal de f .
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Autrement dit, le polynôme minimal µf vérifie la propriété suivante :

Un polynôme P ∈ K[X] annule f si, et seulement si, c’est un multiple de µf .

Démonstration. On commence par l’existence de µf . On vient de voir dans la
remarque 2.2.9 que I(f) \ {0} était non vide. Ainsi, on peut définir

m = min {deg(P ) : P ∈ I(f) \ {0}} ,

et on choisit un polynôme P0 ∈ I(f) unitaire avec deg(P0) = m. Soit maintenant
P ∈ I(f). On effectue la division euclidienne de P par P0, en écrivant P = QP0+R
avec degR < m. On a alors 0 = P (f) = Q(f) ◦ P0(f) + R(f) = R(f) puisque
P0 ∈ I(f). Ainsi R annule f , et comme degR < m on a nécessairement R = 0 par
définition de m. Ainsi P = QP0, et on a montré que I(f) = P0 ·K[X]. Montrons
à présent que P0 est unique : si P1 ∈ I(f) vérifie I(f) = P1 · K[X], alors P1 est
un multiple de P0, et réciproquement ; comme les deux polynômes sont unitaires,
on en déduit qu’ils sont égaux. Ceci conclut la démonstration.

Proposition 2.2.12 (Critère de diagonalisabilité, III). Soit f ∈ L (E). Alors les
propriétés suivantes sont équivalentes :

(i) f est diagonalisable ;

(ii) il existe un polynôme P ∈ K[X] scindé à racines simples qui annule f ;

(iii) µf est scindé à racines simples.

Démonstration. Si f est diagonalisable, il existe une base β, des scalaires λ1, . . . , λr ∈
K deux à deux distincts et n1, . . . , nr > 1 des entiers tels que

[f ]β =

Ü
λ1In1 0

. . .
0 λrInr

ê
.

Dès lors, si P =
∏r

j=1(X − λj), on a

[P (f)]β = P ([f ]β) =

Ü
P (λ1)In1 0

. . .
0 P (λr)Inr

ê
= 0.

Ainsi P annule f et est scindé à racines simples. Supposons maintenant qu’il existe
un polynôme P scindé à racines simples qui annule f . Alors µf divise P donc µf
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est aussi scindé à racines simples. Enfin, supposons µf =
∏r

j=1(X − λj) scindé à
racines simples. Alors µf (f) = 0 donc le lemme des noyaux donne

E = kerµf (f) =
r⊕
j=1

ker(f − λj id) =
r⊕
j=1

Eλj .

Ainsi E est somme directe des espaces propres de f , donc f est diagonalisable. On
a bien montré que (i) =⇒ (ii) =⇒ (iii) =⇒ (i). Ceci conclut la démonstration.

On conclut ce paragraphe par une conséquence de ce critère qui est très utile
en pratique.

Lemme 2.2.13. Soit f ∈ L (E) un endomorphisme diagonalisable et F ⊂ E
un sous-espace de E qui est stable par f , i.e. f(F ) ⊂ F . Alors la restriction
g = f |F ∈ L (F ) est diagonalisable.

Démonstration. Puisque f est diagonalisable, µf est scindé à racines simples.
Comme µf annule f , il annule aussi g, donc g admet un polynôme annulateur
scindé à racines simples. Par le corollaire 2.2.7, g est diagonalisable.

2.2.4 Théorème de Cayley–Hamilton

On termine cette section en énonçant un théorème crucial, celui de Cayley–
Hamilton.

Théorème 2.2.14 (Cayley–Hamilton). Pour tout f ∈ L (E), on a χf (f) = 0.

Ce théorème nous dit que χf ∈ I(f), ce qui équivaut à dire que χf est un
multiple de µf par le théorème-Définition 2.2.11.

Démonstration. Soit x ∈ E non nul : on veut montrer que χf (f)(x) = 0. On pose
ν = min{k ∈ N : (x, f(x) . . . , fk(x)) est liée}. Alors (x, f(x), . . . , f ν−1(x)) est
libre, et f ν(x) est combinaison linéaire des fk(x) avec 0 6 k 6 ν − 1, de sorte
qu’il existe a0, . . . , aν−1 ∈ K tels que

a0x+ · · ·+ aν−1f
ν−1(x) + f ν(x) = 0. (2.5)

On complète la famille (x, . . . , f ν−1(x)) en une base β de E. En utilisant (2.5) on
obtient alors que la matrice de f dans la base β est de la forme

[f ]β =

Å
C(P ) ?

0 B

ã
avec B ∈ Mn−ν(K) et P = Xν +

∑ν−1
k=0 akX

k. On en déduit que

χf = χC(P ) · χB = P · χB
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où on a utilisé l’égalité χC(P ) = P qui provient de la Proposition 2.1.18. Notons
que (2.5) implique que P (f)(x) = 0. On en déduit que

χf (f)(x) = (PχB)(f)(x) =
(
χB(f) ◦ P (f)

)
(x) = χB(f)

(
P (f)(x)

)
= 0,

ce qui achève la démonstration.

Un corollaire du théorème de Cayley-Hamilton est que les racines de µf sont
exactement les valeurs propres de f .

Corollaire 2.2.15. Soit f ∈ L (E). Alors λ ∈ K est racine de µf si et seulement
si λ ∈ sp(f).

Démonstration. Puisque χf (f) = 0, µf divise χf . Ainsi les racines de µf sont
aussi des racines χf . Par suite les racines de µf sont des valeurs propres de f .
Réciproquement, soit λ ∈ K une valeur propre de f . Alors µf (λ) = 0 par le
dernier point de la Proposition 2.2.10.

Une deuxième conséquence est la caractérisation suivante de la trigonalisabi-
lité.

Proposition 2.2.16 (Critère de trigonalisabilité, II). Soit f ∈ L (E). Alors les
trois propriétés suivantes sont équivalentes :

(i) f est trigonalisable ;
(ii) il existe un polynôme P ∈ K[X] scindé tel que P (f) = 0 ;
(iii) µf est scindé.

Remarque 2.2.17. Cette proposition combinée au Théorème 2.1.19 implique que
pour tout f ∈ L (E), µf est scindé ssi χf l’est.

Démonstration. Supposons (i), i.e. f est trigonalisable. Alors χf est scindé et
χf (f) = 0 par le théorème de Cayley-Hamilton, donc (ii) est vérifié. Supposons
(ii) : il existe P ∈ K[X] scindé tel que P (f) = 0. Comme µf divise P , on en déduit
que µf est scindé donc (iii) est vérifié.

Il reste à montrer que (iii) implique (i). On raisonne par récurrence sur la
dimension, et on suppose le résultat vrai pour les espaces vectoriels de dimension
n− 1. Soit E un espace de dimension n et f ∈ L (E) tel que µf est scindé. Alors
µf a une racine λ ∈ K, qui est une valeur propre de f par le corollaire 2.2.15.
Soit x ∈ E non nul un vecteur propre associé, que l’on complète en une base
β = (x, e2, . . . , en) de E. Alors [f ]β est de la formeÅ

λ ?
0 B

ã
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avec B ∈ Mn(K), si bien que pour tout polynôme P ∈ K[X], la matrice P ([f ]β)
est de la forme Å

P (λ) ?
0 P (B)

ã
.

Dans le cas particulier où P = µf , on a µf ([f ]β) = [µf (f)]β = 0, ce qui implique
µf (B) = 0. Ainsi µf (g) = 0 où g est l’endomorphisme de Kn−1 canoniquement
associé à B. Ainsi µg divise µf , qui est scindé ; par conséquent µg l’est aussi. Par
hypothèse de récurrence, on obtient que g, et donc B, sont trigonalisables. On
peut alors procéder exactement comme dans la preuve du Théorème 2.1.19 pour
conclure que f est trigonalisable. La récurrence est établie.

On conclut ce paragraphe avec une deuxième conséquence du théorème de
Cayley–Hamilton.

Proposition 2.2.18 (Polynôme minimal d’une matrice compagnon). Soit P =
a0 + · · ·+ an−1X

n−1 +Xn ∈ K[X] un polynôme unitaire. Alors

χC(P ) = µC(P ) = P.

Démonstration. Comme µC(P ) divise χC(P ) par le théorème de Cayley–Hamilton
et que les deux polynômes sont unitaires, il suffit de montrer que deg µC(P ) = n.
Pour cela on va montrer qu’il n’existe aucun polynôme non nul de degré stricte-
ment inférieur à n qui annule C(P ). En effet, soit f ∈ L (Kn) l’endomorphisme
canoniquement associé à C(P ). SoitQ =

∑d
k=0 bkX

k un polynôme annulateur de f
de degré d < n. Soit e = (e1, . . . , en) la base canonique de Kn. Alors fk(e1) = ek+1

pour tout k < n, si bien que

0 = Q(f)(e1) =
n−1∑
k=0

bkf
k(e1) =

n−1∑
k=0

bkek+1.

Comme la famille (e1, . . . , en) est libre, on en déduit bk = 0 pour tout k, donc
Q = 0. Il suit que deg µf = deg µC(P ) = n, ce qui conclut la démonstration.

2.3 Réduction de Dunford et de Jordan

Dans toute la suite, si F est un K-espace vectoriel de dimension finie, on note
N (F ) l’ensemble des endomorphismes nilpotents de F , c’est-à-dire

N (F ) = {f ∈ L (F ) : ∃m ∈ N∗, fm = 0}.

Si f ∈ N (F ), l’indice de nilpotence de f est l’entier

ν = inf{m ∈ N∗ : fm = 0}.

Comme application de la Proposition 2.2.16, on a le résultat suivant.
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Proposition 2.3.1 (Polynôme caractéristique d’un endomorphisme nilpotent).
Si f ∈ N (F ), on a χf = XdimF et µf = Xν où ν est l’indice de nilpotence de f .

Démonstration. On a fm = 0 avec m > 1, donc µf divise Xm. Ainsi µf = Xp

pour un certain p > 1. En particulier, µf est scindé, donc χf est scindé par la
remarque 2.2.17. Or sp(f) = {0} par le corollaire 2.2.15, donc 0 est la seule racine
de χf . Ceci implique χf = XdimF . Montrons que µf = Xν . Comme Xν annule f
(car f ν = 0), on a que µf divise Xν donc p 6 ν. Mais µf doit annuler f , donc
p = ν par minimalité de ν.

2.3.1 Sous-espaces caractéristiques

Définition 2.3.2. Soit f ∈ L (E) et λ ∈ sp(f). L’espace caractéristique Cλ
associé à λ est défini par

Cλ = ker
(

(f − λ id)m
alg
f (λ)

)
.

Remarque 2.3.3. Les Cλ sont stables par f , au sens où f(Cλ) ⊂ Cλ.

Proposition 2.3.4. Pour tout λ ∈ sp(f), on a

fλ = λ idCλ + hλ, où fλ = f |Cλ et hλ ∈ N (Cλ).

Démonstration. On pose hλ = fλ−λidCλ . Alors fλ = λidCλ +hλ. Soit x ∈ Cλ. En
notant m = malg

f (λ), on a, puisque Cλ est préservé par f − λ idE,

hmλ (x) = (fλ − λidCλ)m(x) = (f − λ idE)m(x) = 0

par définition de Cλ = ker
(
(f − λ idE)m

)
.

Proposition 2.3.5 (Décomposition en sous-espaces caractéristiques). Soit f ∈
L (E) un endomorphisme trigonalisable. Alors

E =
⊕

λ∈sp(f)

Cλ.

En particulier, si K = C, alors E est la somme directe des espaces caractéristiques
associés à n’importe quel endomorphisme.

Démonstration. Comme f est trigonalisable, son polynôme caractéristique

χf (λ) =
r∏
j=1

(λ− λj)mj
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est scindé. Ici les λj sont distincts et mj = malg
f (λj). Le théorème de Cayley–

Hamilton (Théorème 2.2.14) nous dit que

E = kerχf (f).

Par ailleurs, le lemme des noyaux (Théorème 2.2.5) donne

kerχf (f) =
r⊕
j=1

ker
(
(f − λj id)mj

)
.

Avec les deux dernières inégalités on obtient E =
⊕r

j=1Cλj , ce qu’on voulait
démontrer.

Proposition 2.3.6 (Propriétés des sous-espaces caractéristiques). Soit f ∈ L (E)
tel que χf est scindé. Soit λ ∈ sp(f) et fλ = f |Cλ. On note mλ et νλ les ordres de
λ en tant que racine de χf et de µf , respectivement. Alors

(i) dimCλ = mλ ;

(ii) Cλ = ker(f − λ id)νλ.

Démonstration. En choisissant une base adaptée à la somme directe
⊕

λ∈sp(f) Cλ,
on voit que χf =

∏
λ∈sp(f) χfλ . Puisque fλ = λ id +hλ avec hλ nilpotente par la

Proposition 2.3.4, on a χfλ(X) = χhλ(X − λ) = (X − λ)dimCλ par la Proposition
2.3.1. Par conséquent, on obtient χf =

∏
λ∈sp(f)(X − λ)dimCλ , ce qui signifie que

dimCλ = mλ. Pour le deuxième point, on remarque que le lemme des noyaux
appliqué à µf =

∏
λ∈sp(f)(X−λ)νf implique que E coïncide avec la somme directe

des C̃λ où C̃λ = ker(f − λ id)νλ . Or νλ 6 mλ donc C̃λ ⊂ Cλ. Comme E est aussi
somme directe des Cλ, on conclut que C̃λ = Cλ.

2.3.2 Réduction de Dunford

Théorème 2.3.7 (Réduction de Dunford). Soit f ∈ L (E) un endomorphisme
trigonalisable. Alors il existe δ ∈ L (E) diagonalisable et h ∈ N (E) tels que

f = δ + h et δ ◦ h = h ◦ δ.

De plus, le couple (δ, h) est unique.

Démonstration. On procède par analyse-synthèse. Soient δ et h tels que f = δ+h
avec δ diagonalisable, h nilpotent et δ ◦ h = h ◦ δ. Comme h et δ commutent,
on a f ◦ δ = (δ + h) ◦ δ = δ ◦ (δ + h) = δ ◦ f , de sorte que δ commute avec f .
Ainsi δ laisse stable les sous-espaces caractéristiques de f et on peut considérer
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δλ = δ|Cλ ∈ L (Cλ). De même h commute avec f et on note hλ = h|Cλ . Par la
Proposition 2.3.4, on peut écrire fλ = λ idCλ + νλ, de sorte que

δλ = λ idCλ + νλ − hλ.

Notons que hλ commute avec fλ et donc avec νλ = fλ − λ idCλ . Par suite νλ − hλ
est nilpotente. En effet, si m ∈ N∗ vérifie νmλ = hmλ = 0, on a

(νλ − hλ)2m =
2m∑
`=0

(−1)`ν`λh
2m−`
λ = 0,

puisqu’on a ` > m ou 2m − ` > m pour tout ` = 0, . . . , 2m. Par la Proposition
2.3.1, on obtient

χδλ(X) = χνλ−hλ(X − λ) = (X − λ)mλ .

Ainsi λ est la seule valeur propre de δλ. Mais δλ est diagonalisable par le Lemme
2.2.13, donc δλ = λ idCλ , et hλ = νλ = fλ − λ idCλ .

Ainsi, on a montré l’unicité : si δ et h existent, alors nécessairement leurs
restrictions à Cλ sont données respectivement par λ idCλ et fλ − λ idCλ pour tout
λ ∈ sp(f). Autrement dit, si x =

∑
λ∈sp(f) xλ avec xλ ∈ Cλ, on a

δ(x) =
∑

λ∈sp(f)

λxλ et h(x) =
∑

λ∈sp(f)

(f(xλ)− λxλ). (2.6)

Réciproquement, on vérifie facilement en utilisant la Proposition 2.3.4 que les
endomorphismes δ et h définis par la formule ci-dessus vérifient les conclusions du
théorème.

Soit f ∈ L (E) tel que χf est scindé. Pour tout λ ∈ sp(f), on définit l’appli-
cation πλ : E → Cλ comme étant la projection sur Cλ parallèment à

⊕
µ6=λCµ.

Autrement dit,

πλ

Ñ ∑
µ∈sp(f)

xµ

é
= xλ

pour tout x =
∑

µ∈sp(f) xµ appartenant à E =
⊕

µ∈sp(f) Cµ. Les applications πλ
sont appelés projecteurs spectraux et sont caractérisées par

imπλ = Cλ, π2
λ = πλ et πλ ◦ πµ = πµ ◦ πλ = 0 (2.7)

pour toutes valeurs propres λ, µ ∈ sp(f) telles que λ 6= µ. Avec ces notations,
l’équation (2.6) se ré-écrit

δ =
∑

λ∈sp(f)

λπλ et h = f − δ. (2.8)
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Proposition 2.3.8. Soit f ∈ L (E) tel que χf est scindé. Alors les projecteurs
πλ, λ ∈ sp(f), sont des polynômes en f .

Démonstration. On note χf =
∏

λ∈sp(f)(X − λ)mλ . Soit λ ∈ sp(f). On note

P = (X − λ)mλ et Q =
∏
µ 6=λ

(X − µ)mµ .

Alors P et Q sont premiers entre eux et PQ annule f , si bien que le lemme des
noyaux nous donne

E = ker(PQ)(f) = kerP (f)⊕ kerQ(f).

D’autre part, il existe R, S ∈ K[X] tels que PR + QS = 1. Notons p = (QS)(f).
Montrons que p = πλ. D’abord, si x ∈ kerP (f) = Cλ, on a (PR)(f)(x) = 0 d’où
l’on tire

p(x) = (QS)(f)(x) = (1− PR)(f)(x) = x.

D’autre part, si x ∈ kerQ(f), on a p(x) = (QS)(f)(x) = 0. Ceci montre que p est
la projection sur Cλ parallèlement à kerQ(f). Mais par le lemme des noyaux on a

kerQ(f) =
⊕
µ 6=λ

Cµ,

donc p = πλ. Ceci conclut puisque p = (QS)(f) est un polynôme en f .

Corollaire 2.3.9. Les endomorphismes δ et h donnés par le Théorème 2.3.7
sont des polynômes en f .

Démonstration. C’est une conséquence directe du résultat précédent et de l’iden-
tité (2.8).

2.3.3 Réduction des endomorphismes nilpotents

Le but de ce paragraphe est de donner une forme normale pour les endomor-
phismes nilpotents.

Théorème 2.3.10 (Réduction des endomorphismes nilpotents). Soit f ∈ N (E).
Alors il existe une base β de E et des entiers q1, . . . , qs ∈ N∗ tels que

[f ]β =

Ü
Jq1 (0)

. . .
(0) Jqs

ê
.
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Ici Jq ∈ Mq(K) est la matrice dont tous les coefficients sont nuls, sauf ceux de la
sur-diagonale qui valent 1, soit

Jq =


0 1 (0)

. . . . . .
. . . 1

(0) 0

 ∈ Mq(K).

Commençons par un résultat intermédiaire.

Proposition 2.3.11 (Suite des noyaux). Soit f ∈ L (E). Alors il existe un entier
0 6 ν 6 n tel que pour tout k > ν on a

{0} = ker idE ( ker f ( · · · ( ker f ν = ker f ν+1 = · · · = ker fk. (2.9)

Démonstration. Pour tout k ∈ N on note Fk = ker fk. Alors Fk ⊂ Fk+1 pour tout
k. Notons dk = dimFk. La suite (dk) est une suite croissante d’entiers inférieurs
ou égaux à n, donc elle est stationnaire à partir d’un certain rang. Notons

ν = inf{k ∈ N : Fk = Fk+1} = inf{k ∈ N : dk = dk+1}.

Montrons que Fk ( Fk+1 si et seulement si k < ν, ce qui impliquera (2.9). D’abord,
notons que dk 6= dk+1 pour tout k < ν par minimalité de ν, ce qui implique
Fk ( Fk+1. Réciproquement, montrons que k 6 ν implique Fk = Fk+1. On procède
par récurrence. D’abord, c’est vrai au rang ν par définition de ν. Supposons main-
tenant que Fk = Fk+1, et donnons-nous x ∈ Fk+2. On a 0 = fk+2(x) = fk+1(f(x)),
d’où f(x) ∈ Fk+1. Mais Fk+1 = Fk, donc f(x) ∈ Fk et 0 = fk(f(x)) = fk+1(x).
Ainsi x ∈ Fk+1. Ainsi Fk+2 ⊂ Fk+1 donc Fk+1 = Fk+2. La récurrence est éta-
blie.

Démonstration du Théorème 2.3.10. Soit f ∈ N (E). Nous allons montrer qu’il
existe des sous-espaces Gk ⊂ Fk, k = 1, . . . , ν tels que Fk = Fk−1 ⊕ Gk, avec
G1 = F1 et f |Gk est injective Gk → Gk−1 pour k > 1.

On raisonne par récurrence descendante. Pour k = ν, on se donne un supplé-
mentaire Gν de Fν−1 dans Fν . Alors ker f ∩Gν = F1∩Gν ⊂ Fν−1∩Gν = {0} donc
f |Gν est injective. On suppose maintenant qu’on a construit Gν , . . . , Gk avec k > 2
tels que G`⊕F`−1 = F` pour tout ` = k, . . . , ν, et f |G` : G` → G`−1 est injective si
` > k. Alors f |Gk est injective, puisque ker f ∩Gk = F1 ∩Gk ⊂ Fk−1 ∩Gk = {0}.
D’autre part, soit y ∈ f(Gk) ∩ Fk−2. Alors il existe x ∈ Gk tel que y = f(x).
Puisque y ∈ Fk−2 on a x ∈ Fk−1 donc x ∈ Gk ∩ Fk−1 = {0} et x = 0 ce qui
donne y = 0. Ainsi u(Gk) est en somme directe avec Fk−2. On peut donc choisir
un supplémentaire Gk−1 de Fk−2 dans Fk−1 tel que f(Gk) ⊂ Gk−1. Ce sous-espace
vérifie bien les propriétés voulues et la récurrence est établie.



44 CHAPITRE 2. RÉDUCTION DES ENDOMORPHISMES

Notons qu’on a E = ker f ν = Fν = Gν ⊕ Fν−1 = Gν ⊕ Gν−1 ⊕ Fν−2. Une
récurrence immédiate donne

E = Gν ⊕ · · · ⊕G1,

avec u|Gk : Gk → Gk−1 injective pour 1 < k 6 ν. Notons sk = dimGk pour
tout k = 1, . . . , ν. On se donne une base (eν,1, . . . , eν,sν ) de Gν . Alors la famille
f(eν,1), . . . , f(eν,sν ) est une famille libre de Gν−1. On la complète en une base
(eν−1,1, . . . , eν−1,sν−1) de Gν−1. Ainsi de suite, on obtient une base (ek,1, . . . , ek,sk)
de Gk, avec sk > sk+1, telle que ek,j = f(ek+1,j) pour tout j = 1, . . . , sk+1. Notons
que pour tout 1 6 k 6 ν et 1 6 j 6 sk, la famille βk,j = (fk−1(ek,j), . . . , f(ek,j), ek,j)
est libre, puisque f `(ek,j) ∈ Gk−` pour tout ` < k, et les Gk−` sont en somme di-
recte. La famille

β = βν,1 ⊕ · · · ⊕ βν,sν ⊕ βν−1,sν+1 ⊕ · · · ⊕ βν−1,sν−1 ⊕ · · · ⊕ β1,s2+1 ⊕ · · · ⊕ β1,s1

obtenue par concaténation des familles libres βk,j pour 1 6 k 6 ν et sk+1 < j 6 sk
(avec la convention sν+1 = 0), forme exactement la famille des ek,j avec 1 6 k 6 ν
et 1 6 j 6 sk. Elle forme donc une base de E. Dans cette base, on obtient

[f ]β =



Jν (0)
. . .

Jν
. . .

J1

. . .
(0) J1


.

Notons que J1 est la matrice nulle de taille 1 et que le nombre de blocs Jk de taille
k est exactement sk − sk+1.

Remarque 2.3.12. La preuve précédente montre que le nombre de blocs de taille
k dans la forme normale d’un endomorphisme nilpotent f est donné par

2 dim ker fk − dim ker fk−1 − dim ker fk+1.

En effet, on a obtenu que ce nombre est sk − sk+1 où sk = dimGk. Or Gk est un
supplémentaire de ker fk−1 dans ker fk, donc dim ker fk − dim ker fk−1 = sk. Par
conséquent le nombre de blocs de taille k est

sk − sk+1 = (dim ker fk − dim ker fk−1)− (dim ker fk+1 − dim ker fk).
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2.3.4 Réduction de Jordan

Théorème 2.3.13 (Forme réduite de Jordan). Soit f ∈ L (E) tel que χf est
scindé. Alors il existe une base β de E des entiers q1, . . . , qs ∈ N∗ et des scalaires
α1, . . . , αs ∈ K tels que

[f ]β =

Ü
α1Iq1 + Jq1 (0)

. . .
(0) αsIqs + Jqs

ê
.

Les blocs

Nλ,q = λIq + Jq =


λ 1 0 · · · 0

0 λ 1
. . . ...

... . . . . . . . . . 0

... . . . . . . 1
0 · · · · · · 0 λ

 ∈ Mq(K)

sont appelés blocs de Jordan.

Démonstration. Le théorème de Cayley-Hamilton et le lemme des noyaux donnent
E =

⊕
λ∈sp(f) Cλ. Comme les Cλ sont préservés par f , il suffit de montrer le

théorème pour la restriction fλ = f |Cλ ∈ L (Cλ). Puisque Cλ = ker(f − λ id)mλ

où mλ est la multiplicité algébrique de f , on peut écrire fλ = λ id +hλ avec
hλ = f − λ id ∈ N (Cλ). (On aurait pu aussi utiliser directement les Propositions
2.3.4 et 2.3.5.) Par le Théorème 2.3.10, on a une base βλ telle que hλ est une
matrice diagonale par blocs, avec des blocs de la forme Jq avec q ∈ N∗. Dans cette
base, la matrice de f = λ id +hλ est alors diagonale par blocs, et chacun de ses
blocs est de la forme λIq + Jq avec q ∈ N∗. Ceci conclut la démonstration.

Proposition 2.3.14 (Puissances des blocs de Jordan). Soient λ ∈ K et q ∈ N∗.
Alors pour tout m ∈ N, on a

(λIq + Jq)
m =


λm

(
m
1

)
λm−1

(
m
2

)
λm−2 · · ·

(
m
q−1

)
λm−(q−1)

0 λm
(
m
1

)
λm−1 . . . ...

... . . . . . . . . .
(
m
2

)
λm−2

... . . . . . .
(
m
1

)
λm−1

0 · · · · · · 0 λm

 .

Démonstration. On a

(λIq + Jq)
m =

m∑
k=0

Ç
m

k

å
λm−kJkq .
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Or, pour tout k ∈ N, la matrice Jkq est la matrice dont les coefficients sont nuls, sauf
ceux de la k-ième sur-diagonale qui valent 1. La formule annoncée s’ensuit.

2.4 Exponentielle de matrices

2.4.1 Définition de l’exponentielle

On dit qu’une suite (Ak)k∈N de matrices de Mn(K) converge vers A = (ai,j) si
pour tous 1 6 i, j 6 n, le coefficient en place (i, j) de Ak converge vers ai,j quand
k →∞. Sur Mn(K), on définit aussi la norme triple

|||A||| = sup
{
‖Ax‖ : x ∈ Kn, ‖x‖ = 1

}
,

où ‖x‖ = (|x1|2 + · · ·+ |xn|2)1/2 est la norme euclidienne ou hermitienne canonique
sur Kn, selon que K = R ou C. Il n’est pas dur de vérifier que |||·||| est une norme
sur Mn(K), qui vérifie

|||AB||| 6 |||A||| · |||B|||, A,B ∈ Mn(K).

On dit que |||·||| est une norme d’algèbre. Puisque Mn(K) est de dimension finie,
toutes les normes sont équivalentes, et il existe des constantes c, C > 0 telles que

c‖A‖∞ 6 |||A||| 6 C‖A‖∞, A ∈ Mn(K), (2.10)

où ‖A‖∞ = sup16i,j6n |ai,j|. En particulier on a Ak → A dans Mn(K) si et seule-
ment si |||Ak − A||| → 0.

Théorème–Définition 2.4.1 (Exponentielle de matrice). Soit A ∈ Mn(K).

Alors la suite (Ak) définie par Ak =
k∑
`=0

A`

`!
est convergente et converge vers

une matrice que l’on note

eA = expA =
∞∑
k=0

Ak

k!
∈ Mn(K).

On dit que expA est l’exponentielle de la matrice A.

Démonstration. Si p < q on a

|||Ap − Aq||| 6
q∑

`=p+1

|||A|||`

`!
.

Par (2.10), on obtient que pour tout (i, j), la suite (a
(k)
i,j )k∈N (où a(k)

i,j est le coef-
ficient en place (i, j) de Ak) est de Cauchy. Donc la suite (a

(k)
i,j )k∈N elle converge,

ce qui signifie que (Ak) converge.
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Remarquons que pour A = 0, on a

exp 0 = lim
k

k∑
`=0

0`

`!
= lim

k
In = In. (2.11)

2.4.2 Propriétés de l’exponentielle

Proposition 2.4.2 (Exponentielle d’une somme de matrices qui commutent).
Soient A,B ∈ Mn(K) deux matrices qui commutent. Alors

exp(A+B) = exp(A) exp(B).

Démonstration. Puisque A et B commutent on a

(A+B)k =
k∑
`=0

(A+B)`

`!
=

k∑
`=0

∑̀
m=0

AmB`−m

m!(`−m)!
=

∑
06m,`6k
m+`6k

A`

`!

Bm

m!
.

Puisque AkBk =
∑

06m,`6k
A`

`!
Bm

m!
, on obtient

|||AkBk − (A+B)k||| =

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∑

06m,`6k
m+`>k

A`

`!

Bm

m!

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ 6

∑
06m,`6k
m+`>k

|||A|||`

`!

|||B|||m

m!
.

Le terme de droite de cette inégalité est égal à(
k∑
`=0

|||A|||`

`!

)(
k∑

m=0

|||B|||m

m!

)
−

k∑
`=0

(|||A|||+ |||B|||)`

`!
,

qui tend vers exp(|||A|||) exp(|||B|||) − exp(|||A||| + |||B|||) = 0 quand k → ∞. Par
suite AkBk − (A+B)k → 0, ce qui montre l’égalité voulue.

Corollaire 2.4.3. Pour toute matrice A ∈ Mn(K), la matrice expA est inver-
sible d’inverse exp(−A).

Démonstration. En effet exp(A) exp(−A) = exp(A−A) = exp(0) = In par (2.11).

Proposition 2.4.4 (Exponentielle de matrices semblables). Soit A ∈ Mn(K) et
P ∈ GLn(K). Alors

exp(P−1AP ) = P−1 exp(A)P.
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Démonstration. En effet il suffit de remarquer que
k∑
`=0

(P−1AP )`

`!
= P−1

(
k∑
`=0

A`

`!

)
P

et de passer à la limite k →∞. En effet, Ak → expA donc∣∣∣∣∣∣P−1AkP − P−1 exp(A)P
∣∣∣∣∣∣ =

∣∣∣∣∣∣P−1(Ak − expA)P
∣∣∣∣∣∣

6
∣∣∣∣∣∣P−1

∣∣∣∣∣∣|||P ||||||Ak − exp(A)||| → 0

quand k →∞.

Un corollaire immédiat est le suivant.

Corollaire 2.4.5 (Exponentielle d’une matrice diagonalisable). Soit A ∈ Mn(K)
une matrice diagonalisable, qu’on écrit

A = P−1diag(α1, . . . , αn)P

avec P ∈ GLn(K). Alors

exp(A) = P−1diag(eα1 , . . . , eαn)P.

Démonstration. Si D = diag(α1, . . . , αn) on a

k∑
`=0

D`

`!
= diag

(
k∑
`=0

α`1
`!
, . . . ,

k∑
`=0

α`n
`!
,

)
,

donc expD = diag(eα1 , . . . , eαn). La Proposition 2.4.4 permet de conclure.

Proposition 2.4.6 (Exponentielle d’une matrice nilpotente). Soit N ∈ Mn(K)
une matrice nilpotente et ν l’indice de nilpotence de N . Alors

exp(N) =
ν−1∑
`=0

N `

`!
.

Démonstration. Cela découle immédiatement du fait que N ` = 0 si ` > ν.

Les trois propriétés précédentes impliquent le résultat suivant.

Proposition 2.4.7. Soit A ∈ Mn(K) telle que χA est scindé. On écrit A = ∆+N
la décomposition de Dunford de A, avec ∆ diagonalisable et N nilpotente. Soient
α1, . . . , αn ∈ K les valeurs propres de A comptées avec multiplicités. Alors il existe
P ∈ GLn(K) telle que

exp(A) = P−1diag(eα1 , . . . , eαn)P
n−1∑
`=0

N `

`!
.
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Démonstration. On écrit ∆ = P−1diag(α1, . . . , αn)P . Alors les trois propositions
précédentes impliquent tour à tour

expA = exp(∆ +N) = exp ∆ expN = P−1diag(eα1 , . . . , eαn)P expN

= P−1diag(eα1 , . . . , eαn)P
n−1∑
`=0

N `

`!
,

où on a utilisé que l’indice de nilpotence de N est inférieur ou égal à n.

2.4.3 Dérivation dans l’espace des matrices

Définition 2.4.8. On dit qu’une application F : R → Mn(K), t 7→ f(t), est de
classe C 1 si pour tout (i, j) le coefficient Fi,j(t) en place (i, j) de F (t) dépend de
manière C 1 de t. Si F est de classe C 1 on note F ′(t) = d

dt
F (t) la matrice dont le

coefficient en place (i, j) est F ′i,j(t).

Proposition 2.4.9. Soit A ∈ Mn(K) et F (t) = exp tA pour tout t ∈ R. Alors
F : R→ Mn(K) est de classe C 1 et

d

dt
exp(tA) = A exp(tA) = exp(tA)A, t ∈ R.

Démonstration. Pour tous t, h ∈ R on a

exp((t+ h)A)− exp(tA) = exp(tA) exp(hA)− exp(tA) = exp(tA)(exp(hA)− In).

On écrit

exp(hA)− In = hA+ h2

∞∑
k=2

hk−2Ak

k!

d’où l’on tire, pour |h| < 1,∣∣∣∣∣∣∣∣∣∣∣∣exp(hA)− In
h

− A
∣∣∣∣∣∣∣∣∣∣∣∣ 6 |h| ∞∑

k=2

|||A|||k

k!
6 |h| exp |||A|||.

Il suit que∣∣∣∣∣∣∣∣∣∣∣∣F (t+ h)− F (t)

h
− exp(tA)A

∣∣∣∣∣∣∣∣∣∣∣∣ 6 |||exp(tA)|||
∣∣∣∣∣∣∣∣∣∣∣∣ÅF (h)− In

h
− A
ã∣∣∣∣∣∣∣∣∣∣∣∣→ 0

quand h → 0. Par suite F est dérivable de dérivée F ′(t) = exp(tA)A, qui est
clairement continue en t. Puisque exp(tA) et A commutent, le résultat est démon-
tré.
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2.5 Applications

Dans ce paragraphe nous présentons deux applications des notions abordées
dans ce chapitre : le calcul des suites récurrentes linéaires et la résolution des
équations différentielles ordinaires.

2.5.1 Suites récurrentes linéaires

On s’intéresse aux suites définies par une relation de récurrence linéaire d’ordre
n à coefficients constants. Soient a0, . . . , an−1 ∈ K. On cherche à trouver les suites
(uk)k∈N satisfaisant la relation

a0uk + · · ·+ an−1uk+n−1 + uk+n = 0, k ∈ N. (R)

Le polynôme caractéristique associé à l’équation (R) est le polynôme unitaire
P = a0 + · · ·+ an−1X

n−1 +Xn.

Théorème 2.5.1. On suppose que le polynôme caractéristique de (R) est scindé,
et on note P =

∏r
j=1(X − λj)mj où mj ∈ N∗ et les λj sont deux à deux distincts.

Alors (uk)k∈N satisfait la relation (R) si, et seulement si, il existe des polynômes
Q1, . . . , Qr avec degQj 6 mj − 1 tels que

uk =
r∑
j=1

λkjQj(k), k ∈ N. (2.12)

Démonstration. Soit E le K-espace vectoriel des suites (uk)k∈N vérifiant (R). Alors
on a un isomorphisme Ψ : E → Kn donné par u 7→ (u0, . . . , un−1), donc dimE = n.
Soit u ∈ E. En notant uk = (uk, . . . , uk+n−1), on voit que

uk+1 = A · uk, k ∈ N,

où A = C(P ) est la matrice compagnon associée au polynôme caractéristique P
de (R). Par récurrence immédiate, on obtient

uk = Ak · u0, k ∈ N.

Soit f ∈ L (Kn) l’endomorphisme x 7→ A · x canoniquement associé à A. Alors

χf = P =
r∏
j=1

(X − λj)mj .

Soit β = β1⊕· · ·⊕βr une base adaptée à la décomposition Kn =
⊕r

j=1Cλj . Alors
[f ]β est diagonale par blocs, et contient r blocs A1, . . . , Ar de tailles respectives
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m1, . . . ,mr. On peut écrire fλj = λj idCλj +hλj avec hλj ∈ N (Cλj), si bien que
Aj = λjImj +Nj avec Nj nilpotente d’indice au plus mj. Par conséquent, si k ∈ N
on a

Akj = (λjImj +Nj)
k =

k∑
`=0

Å
k
`

ã
λk−`j N `

j = λkj

mj−1∑
`=0

Å
k
`

ã
λ−`j N

`
j ,

où pour tout ` ∈ N,
Å
k
`

ã
= (`!)−1k(k − 1) · · · (k − `+ 1) dépend de manière po-

lynomiale de k. Par conséquent, il existe des matrices Mj,1, . . . ,Mj,mj−1 ∈ Mn(K)
telles que

Akj = λkj

mj−1∑
`=0

Mj,`k
`, k > 0. (2.13)

Écrivons à présent, pour k ∈ N,

uk = Ak · u0 =

Ü
Ak1 (0)

. . .

(0) Akr

ê
· u0.

Alors (2.13) implique immédiatement que uk est de la forme (2.12).
Réciproquement, notons que les suites de la forme (2.12) forment un espace

vectoriel de dimension m1 + · · · + mr = n. Mais on vient de voir qu’il contient
E ; cet espace est donc exactement l’espace des solutions de (R), ce qui conclut la
démonstration.

2.5.2 Équations différentielles linéaires à coefficients
constants

Dans ce paragraphe on explique comment résoudre les équations différentielles
linéaires à coefficients constants. Étant donnés a0, . . . , an−1 ∈ K des constantes,
on cherche à résoudre l’équation différentielle d’inconnue g ∈ C n(R,K)

n−1∑
k=0

akg
(k)(t) + g(n)(t) = 0, t ∈ R, (ED)

avec conditions initiales g(k)(0) = hk, pour k = 0, . . . , n− 1.

Théorème 2.5.2. On suppose que le polynôme caractéristique de (R) est scindé,
et on note P =

∏r
j=1(X − λj)mj où mj ∈ N∗ et les λj sont deux à deux distincts.



52 CHAPITRE 2. RÉDUCTION DES ENDOMORPHISMES

Alors les solutions de (ED) sont exactement les fonctions g ∈ C∞(R,K) de la
forme

r∑
j=1

etλjQj(t)

où Qj ∈ K[X] est un polynôme de degré inférieur ou égal à mj − 1 pour tout
j = 1, . . . , r.

Démonstration. Soit E = C∞(R,K) et D : E → E l’opérateur de dérivation.
Alors g ∈ E est solution de (ED) si, et seulement si, g ∈ kerP (D). Le lemme des
noyaux nous donne

kerP (D) =
r⊕
j=1

Cj avec Cj = ker(D − λj)mj . (2.14)

Identifions les espaces Cj. Soit Ψj : E → E défini par Ψj(g)(t) = g(t)e−tλj . Alors
Ψj est un isomorphisme et D ◦Ψj = Ψj ◦ (D − λj), ce qui donne

Cj = Ψ−1
j

(
ker(Dmj)

)
. (2.15)

Notons que kerDmj ' Kmj−1[X]. Par (2.14) et (2.15), on obtient que g ∈ kerP (D)
si et seulement si g est de la forme

g(t) =
r∑
j=1

etλjQj(t), t ∈ R,

avec Qj ∈ Kmj−1[X]. On a donc montré que toutes les solutions de classe C∞

de (ED) sont de la forme annoncée, et réciproquement. Pour conclure, il suffit
donc de montrer que les solutions de classe C n(R,K) de (ED) sont en fait dans
C∞(R,K). Soit donc g ∈ C n(R,K) solution de (ED). Alors g(k) est C 1 pour tout
k < n, donc g(n) = −a0g− · · · − an−1g

(n−1) l’est aussi. Donc g est de classe C n+1.
En itérant cet argument on obtient g ∈ C∞(R,K), donc toutes les solutions de
(ED) sont des éléments de kerP (D). Ceci conclut la démonstration.

La solution de (ED) est en fait explicite et donnée par une exponentielle. Nous
détaillons cette autre approche, similaire à celle proposée plus haut pour les suites
récurrentes.

Proposition 2.5.3. Soit g une solution de (ED). On note

g(t) = (g(t), . . . , g(n−1)(t)) ∈ Kn, t ∈ R.

Alors g(t) = exp(tA) · g(0) où A est la matrice compagnon associée au polynôme
caractéristique de (ED).
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Démonstration. En effet, l’équation différentielle (ED) s’écrit

g′(t) = A · g(t),

où A = C(P ) est la matrice compagnon associée au polynôme caractéristique P
de (ED). Posons

h(t) = exp(tA) · g(0), t ∈ R.

Alors h′(t) = A · h(t) par la Proposition 2.4.9. Ainsi on obtient f ′(t) = 0 où
f(t) = g(t)−h(t). Puisque f(0) = h(0) = g(0) on obtient f(t) = 0 donc g(t) = h(t)
pour tout t ∈ R. Ceci conclut la démonstration.

Exercice 2.5.4. Retrouver le Théorème 2.5.2 en utilisant le théorème précédent
et la décomposition de Dunford, dans l’esprit de la démonstration que nous avons
donnée pour le Théorème 2.5.1.
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Dans tout le chapitre, E désigne un K-espace vectoriel qui n’est pas forcément
de dimension finie.

3.1 Formes linéaires, espace dual

3.1.1 Définitions et premières propriétés

Définition 3.1.1. Une forme linéaire sur un espace vectoriel E est une applica-
tion ` : E → K qui est linéaire. L’espace dual E? de E est l’espace des formes
linéaires sur E, c’est-à-dire que E? = L (E,K).

Exemple 3.1.2. Voici quelques exemples de formes linéaires.

55
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(i) L’application ` : E → K donnée par `(x) = 0 pour tout x est une forme
linéaire (nulle).

(ii) Si λ ∈ K, l’application d’évaluation K[X] → K donnée par P 7→ P (λ) est
une forme linéaire.

(iii) L’application C ([a, b],K)→ K donnée par f 7→
∫ b
a
f est une forme linéaire.

Comme K est un K-espace vectoriel de dimension 1, on a

dimE = dimE?

si dimE <∞. On notera 〈·, ·〉 : E? × E → K le crochet de dualité, défini par

〈`, x〉 = `(x), ` ∈ E?, x ∈ E.

Notons que pour toute forme linéaire ` ∈ (Kn)?, il existe un unique n-uplet
(a1, . . . , an) ∈ K tel que

`(x) = a1x1 + · · ·+ anxn, x = (x1, . . . , xn) ∈ Kn.

Plus généralement, on a la proposition suivante.

Proposition 3.1.3. Supposons E de dimension finie et soit e = (ei) une base de
E. Alors, pour toute forme linéaire f ∈ E?, il existe un unique n-uplet (a1, . . . , an) ∈
Kn tel que

`(x) = a1x1 + · · ·+ anxn, x = x1e1 + · · ·+ xnen ∈ E.

Ainsi, de la même manière qu’un choix de base permet d’identifier E à Kn, un
choix de base permet aussi d’identifier E? à Kn.

Démonstration. Soit ` ∈ E?. Posons aj = `(ej) pour tout j = 1, . . . , n. Alors par
linéarité de `, on a

`(x1e1 + · · ·+ xnen) = a1x1 + · · ·+ anxn.

Ces coefficients sont uniques : si l’équation ci-dessus est vérifiée pour tout x ∈ E,
alors on a nécessairement aj = `(ej).

Remarque 3.1.4. Le n-uplet (a1, . . . , an) correspond en fait aux coefficients de
la matrice de ` dans la base e et vers la base canonique 1 de K :

1[`]e =
(
a1 · · · an

)
.

Le résultat ci-dessus revient en fait à représenter ` dans une certaine base e?
de E? associée à e, comme nous allons le voir au paragraphe suivant.
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3.1.2 Base duale

Théorème–Définition 3.1.5 (Base duale). Soit E de dimension finie et e =
(ej) une base de E. Il existe une unique base e? = (e?j) de E? telle que

e?k(e`) = δk,`, 1 6 k, ` 6 n.

La base e? est la base duale de e, tandis que e est la base anté-duale de e?.

Dans le théorème ci-dessus, δk,` est le symbole de Kronecker, défini par

δk,` =

ß
1 si k = `,
0 sinon.

Démonstration. Si une telle base existe, alors nécessairement on a

e?j(x1e1 + · · ·+ xnen) = xj

pour tout x = x1e1 + · · · + xnen ∈ E. Réciproquement, si on définit e?j par la
formule ci-dessus, on vérifie aisément que (e?j) est libre, donc est une base de E?

puis que dimE? = n. En effet, si on a λ1, . . . , λn ∈ K tels que λ1e
?
1+· · ·+λne?n = 0,

alors en évaluant en ej on obtient λj = 0. Ainsi (e?j) est libre, ce qui conclut la
démonstration.

Proposition 3.1.6. Soit e = (ei) une base de E et e? = (e?j) sa base duale. Alors
on a

x =
n∑
i=1

e?i (x)ei =
n∑
i=1

〈e?i , x〉ei, x ∈ E.

De même, on a l’égalité

` =
n∑
j=1

`(ej)e
?
j =

n∑
j=1

〈`, ej〉e?j , ` ∈ E?.

Démonstration. Si x = x1e1 + · · ·xnen ∈ E on a xj = e?j(x) par définition de
e?, d’où la première affirmation. En outre, si ˜̀ est la forme linéaire définie par la
somme à droite de la dernière égalité ci-dessus, on a, pour tout i,

˜̀(ei) =
n∑
j=1

`(ej)e
?
j(ei) = `(ei)

puisque e?j(ei) = δj,i. Par suite ` et ˜̀coïncident sur la base (ei) donc elles coïncident
partout.

Soit l = (`1, . . . , `n) une base de E?. On montre de la même manière que pour
le Théorème-Définition 3.1.5 l’existence d’une unique base e = (e1, . . . , en) de E,
appelée base anté-duale de l, qui vérifie l = e?.
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3.1.3 Changement de base

On donne la formule de changement pour la matrice de changement de base
entre deux bases duales.

Proposition 3.1.7. Soit E un K-espace de dimension finie et e et f deux bases
de E. On note e? et f? les bases duales de e et f . Alors on a

Pe?,f? = t(Pe,f )
−1

où Pβ,γ est la matrice de changement de base de β à γ.

Démonstration. Soit n = dimE. On note e = (ej), f = (fj), e? = (e?j) et f? = (f ?j ).
On note aussi A = (ai,j) = Pf ,e et B = (bi,j) = Pe?,f? . Alors la Proposition 3.1.6
donne

f ?j =
n∑
i=1

f ?j (ei)e
?
i .

Par conséquent bi,j = f ?j (ei). La Proposition 3.1.6 donne aussi

ei =
n∑
j=1

f ?j (ei)fj.

Par conséquent aj,i = f ?j (ei) et on obtient B = tA, ce qu’on voulait démontrer.

3.1.4 Hyperplans

Définition 3.1.8. Soit E un K-espace vectoriel. Un hyperplan de E est par
définition le noyau d’une forme linéaire non nulle sur E.

Exemple 3.1.9. Voici quelques exemples d’hyperplans.
(i) Si λ ∈ K, l’ensemble {P ∈ K[X] : P (λ) = 0} des polynômes qui s’annulent

en λ est un hyperplan de K[X].

(ii) L’ensemble des fonctions continues f : [a, b]→ K telles que
∫ b
a
f = 0 est un

hyperplan de C ([a, b],K).

Proposition 3.1.10. Soit E un K-espace vectoriel (pas nécessairement de dimen-
sion finie). Alors les conditions suivantes sont équivalentes :
(i) H est un hyperplan de E ;
(ii) il existe un sous-espace F ⊂ E de dimension 1 tel que E = H ⊕ F .

Si, de plus, E est de dimension finie n, ces conditions sont équivalentes au fait
que dimH = n− 1.
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Démonstration. Soit H un hyperplan de E et ` ∈ E? \ {0} telle que H = ker `.
Soit x ∈ E tel que `(x) 6= 0. Alors on affirme que E = H ⊕ Kx. En effet, on a
bien sûr H ∩Kx = {0} et si y ∈ E, on peut écrire

y = z + λx où λ = `(y)/`(x) et z = y − λx.

Alors `(z) = `(y) − λ`(x) = 0 donc z ∈ H. On a bien montré que E = H ⊕ Kx.
Réciproquement, supposons E = H ⊕ F avec dimF = 1. Soit π : E → F la
projection sur F parallèlement à H, et ψ : F ' K un isomorphisme (qui existe
toujours car dimF = 1). Notons ` = ψ ◦ π. Alors ` est une forme linéaire, non
nulle, puisque `(x) = ψ(x) pour tout x ∈ F . Enfin, montrons que ker ` = H. On
a ker ` = ker(ψ ◦ π). Comme ψ est injective on a ker ` = ker π = H.

Enfin, si E est de dimension finie, le dernier point est une conséquence immé-
diate de la proposition 3.1.3.

Corollaire 3.1.11. Deux formes linéaires ont même noyau si et seulement si
elles sont proportionnelles.

Démonstration. Supposons que `, η ∈ E? ont même noyau H. Si H = E, alors
` = η = 0. Sinon soit x /∈ H. Alors E = H ⊕ Kx par la preuve de la proposition
3.1.10 et `(x), η(x) 6= 0. Soit y = z + λx avec z ∈ H et λ ∈ K. Alors on a `(y) =
λ`(x) = aλη(x) = aη(y) où a = `(x)/η(x), donc η et ` sont proportionnelles. La
réciproque est claire.

Proposition 3.1.12. Soit E un K-espace vectoriel de dimension finie. Soit F ⊂ E
un sous-espace de E. Alors codimF = r si et seulement si, il existe une famille
libre (`1, . . . , `r) de E? telle que

F =
r⋂
j=1

ker `j.

Démonstration. Soit F un espace vectoriel de codimension r, i.e. dimF = n −
r. On se donne (er+1, . . . , en) une base de F , que l’on complète en une base
(e1, . . . , en) de E. Alors x ∈ F si, et seulement si, e?j(x) = 0 pour tout j = 1, . . . , r
si, et seulement si x ∈ ker e?j pour tout j = 1, . . . , r. En posant `j = e?j pour
j = 1, . . . , r, on obtient F =

⋂r
j=1 ker `j. Réciproquement, on se donne (`1, . . . , `r)

une famille libre de E? et on pose F =
⋂r
j=1 ker `j. On complète la famille

(`1, . . . , `r) en une base l = (`1, . . . , `n) de E?. Soit e = (e1, . . . , en) la base anté-
duale de l. Alors

r⋂
j=1

ker `j = vect(er+1, . . . , en)

donc dimF = r. Ceci conclut la démonstration.
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3.1.5 Espace bidual

L’espace bi-dual E?? de E est l’espace dual de E?. Pour tout x ∈ E, on note
evx ∈ E?? l’évaluation au point x, définie par

evx : E? → K, ` 7→ `(x).

La proposition suivante montre qu’on peut identifier x à evx.

Proposition 3.1.13. Supposons que E est de dimension finie. Alors l’endomor-
phisme ev : E → E?? donné par

ev : x 7→ evx

est un isomorphisme.

Démonstration. Puisque les espaces ont même dimension, il suffit de montrer que
ev est injective. Soit e1 ∈ E \ {0}. On complète e1 en une base e = (e1, e2, . . . , en)
de E, et on note e? = (e?1, . . . , e

?
n) la base duale de e. Alors eve1(e

?
1) = 1. En

particulier eve1 est non nulle et on a montré que e1 7→ eve1 est injective. Ceci
conclut.

3.2 Orthogonalité (au sens de la dualité)

3.2.1 Définitions et propriétés basiques

Définition 3.2.1. Soit E un K-espace vectoriel et F ⊂ E un sous-espace. Le
dual orthogonal de F est le sous-espace F ◦ ⊂ E? donné par

F ◦ = {` ∈ E? : `(x) = 0, x ∈ F} = {` ∈ E? : F ⊂ ker `}.

Remarque 3.2.2. Étant donnée ` ∈ E?, le dual orthogonal de son noyau est la
droite qu’elle engendre, i.e. (ker `)◦ = K`. En effet, si η ∈ E? vérifie ker ` ⊂ ker η,
alors η = a` pour un certain a ∈ K. Réciproquement a` ∈ (ker `)◦ pour tout
a ∈ K.

Proposition 3.2.3 (Propriétés du dual orthogonal). Soit E un K-espace vectoriel
et F,G ⊂ E des sous-espaces. Alors les propriétés suivantes sont vérifiés.
(i) Si E est de dimension finie alors dimF ◦ + dimF = E.

(ii) Si F ⊂ G alors G◦ ⊂ F ◦.
(iii) (F +G)◦ = F ◦ ∩G◦.
(iv) F ◦ +G◦ ⊂ (F ∩G)◦, et on a l’inclusion réciproque si dimE <∞.
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(v) Sous l’isomorphisme de la proposition 3.1.13, on a F ' (F ◦)◦.

Démonstration. On admet dans un premier temps le premier point. Pour montrer
le point (ii) on remarque simplement que si ` ∈ G◦, alors `(x) = 0 pour tout
x ∈ G, donc en particulier `(x) = 0 pour tout x ∈ F ⊂ G, donc ` ∈ F ◦.

Pour le point (iii), on remarque que si ` ∈ F ◦∩G◦, alors F ⊂ ker ` et G ⊂ ker `
donc F + G ⊂ ker ` puisque ker ` est un espace vectoriel, donc ` ∈ (F + G)◦.
L’inclusion réciproque est claire.

Montrons (iv). Soit ` = f + g ∈ F ◦ +G◦. Si x ∈ F ∩G on a f(x) = 0 = g(x),
donc `(x) = 0. Ceci implique que ` ∈ (F ∩ G)◦. Si E est de dimension finie, le
point (i) donne dim(F ∩ G)◦ = n − dim(F ∩ G). En outre, les points (i) et (iii)
impliquent

dim(F ◦ +G◦) = dimF ◦ + dimG◦ − dim(F ◦ ∩G◦)
= n− dimF + n− dimG− dim(F +G)◦

= n− (dimF + dimG− dim(F +G))

= n− dim(F ∩G),

donc dim(F ◦ + G◦) = dim(F ∩ G)◦, donc ces deux espaces sont égaux puisqu’on
a l’inclusion F ◦ +G◦ ⊂ (F ∩G)◦.

Montrons à présent (v). On a

(F ◦)◦ = {η ∈ E?? : η(`) = 0, ` ∈ F ◦} ' {x ∈ E : evx(`) = 0, ` ∈ F ◦}.

Notons F̃ = {x ∈ E : evx(`) = 0, ` ∈ F ◦}. Alors F ⊂ F̃ . En outre dim F̃ =

dim(F ◦)◦ = dimF donc F = F̃ . On en déduit le point (v).
Il reste à montrer (i). Soit (e1, . . . , er) une base de F , que l’on complète en une

base (e1, . . . , en) de E. Alors on affirme que

F ◦ = vect(e?r+1, . . . , e
?
n).

En effet, notons F̃ ⊂ E? le terme de droite de l’égalité ci-dessus. On a bien sûr
F̃ ⊂ F ◦, puisque si j > r on a e?j(ei) = 0 pour tout i = 1, . . . , r, donc e?j ∈ F ◦.
Réciproquement, soit ` ∈ F ◦. Écrivons

` =
n∑
j=1

aje
?
j

avec aj = `(ej). Puisque ` ∈ F ◦ on a 0 = `(ej) = aj pour tout j = 1, . . . , r, donc
` ∈ vect(e?r+1, . . . , e

?
n) = F̃ . On a obtenu dimF ◦ = dim F̃ = n − r = n − dimF ,

ce qui conclut la démonstration.
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3.2.2 Application

Nous donnons ici une application élégante de la notion d’orthogonalité.

Proposition 3.2.4. Soit X un ensemble et f1, . . . , fn : X → K des fonctions qui
forment une famille libre de KX (les applications de X vers K). Alors il existe des
éléments x1, . . . , xn ∈ E tels que la matriceÖ

f1(x1) · · · f1(xn)
...

...
fn(x1) · · · fn(xn)

è
est inversible.

Démonstration. Soit E = KX l’espace des applications de X vers K. Soit F =
vect(f1, . . . , fn). Pour tout x ∈ X, on note δx : F → K l’évaluation en x qui est
la forme linéaire donnée par F 3 f 7→ f(x) ∈ K. On considère alors

G = vect
{
δx : x ∈ X

}
⊂ F ?

l’espace engendré toutes les formes δx, quand x parcourt X. Soit f ∈ F . Notons
que si `(f) = 0 pour tout ` ∈ G, alors f(x) = 0 pour tout x ∈ X, donc f = 0. Ceci
montre que {f ∈ F : evf (`) = 0, ` ∈ G} = {0}. Mais cet espace est naturellement
identifié à G◦ par l’isomorphisme de la proposition 3.1.13. En particulier G◦ = {0}
donc G = F ?. Dès lors, il existe x1, . . . , xn ∈ X tels que δ = (δx1 , . . . , δxn) forme
une base de F ?. Pour tout x ∈ X on peut écrire

δx =
n∑
i=1

δx(fi)f
?
i =

n∑
i=1

fi(x)f ?i

où f? = (f ?1 , . . . , f
?
n) est la base duale de f = (f1, . . . , fn). En particulier, la matrice

(fi(xj)) est la matrice des vecteurs de δ dans la base f?, donc est inversible.

3.3 Transposition

3.3.1 Définitions et premières propriétés

Définition 3.3.1. Soient E,F deux K-espaces vectoriels et f ∈ L (E,F ). On
définit l’endomorphisme transposé f> : F ? → E? par

f>(`)(x) = `(f(x)), ` ∈ F ?, x ∈ E.

Proposition 3.3.2. Soient E,F,G des K-espaces vectoriels, λ ∈ K, f, g ∈ L (E,F ),
h ∈ L (F,G). Alors :
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(i) (f + g)> = f> + g> ;
(ii) (λf)> = λf> ;
(iii) (h ◦ f)> = f> ◦ h>;

(iv) sous l’identification E ' E? de la proposition 3.1.13, on a (f>)> = f ;

(v) (idE)> = idE?.

Démonstration. Les trois premiers points sont immédiats. Pour (iv), on vérifie
que pour ` ∈ G? et x ∈ E? on a〈

(h ◦ f)>`, x
〉

= 〈`, (h ◦ f) (x)〉 = 〈`, h(f(x))〉 = 〈h>(`), f(x)〉 =
〈
f>(h>(`)), x

〉
.

Ceci montre bien l’égalité annoncée.

Exemple 3.3.3. Soient a < b des réels et ` : R[X] → R définie par

`(P ) =

∫ b

a

P (t)dt, P ∈ R[X].

Soit D ∈ L (R[X]) défini par D(P ) = P ′. Alors

D>` = δb − δa où δc(P ) = P (c), c ∈ R, P ∈ R[X].

En effet pour tout P ∈ R[X] on a

〈D>`, P 〉 = 〈`,D(P )〉 = 〈`, P ′〉 =

∫ b

a

P ′ = P (b)− P (a) = 〈δb − δa, P 〉.

3.3.2 Lien avec la transposition matricielle

La proposition suivante fait le lien entre la transposée d’une matrice et la
transposée d’une application linéaire qu’elle représente.

Proposition 3.3.4. Soit E un K-espace de dimension finie et β une base de E.
Alors pour tout endomorphisme f ∈ L (E), on a[

f>
]
β?

= t[f ]β.

Démonstration. On note β = (e1, . . . , en) et β? = (e?1, . . . , e
?
n). On note A = (ai,j)

la matrice [f ]β, et B = (bi,j) la matrice
[
f>
]
β?
. Alors on a

f(ej) =
n∑
i=1

ai,jei et f>(e?j) =
n∑
i=1

bi,je
?
i , j = 1, . . . , n.
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Par la Proposition 3.1.6 on a

ai,j = 〈e?i , f(ej)〉 = 〈f>(e?i ), ej〉 =
n∑
k=1

〈bk,ie?k, ej〉 = bj,i,

ce qui montre bien que B = tA.

En conséquence du résultat précédent, on obtient la

Proposition 3.3.5. Soit E un K-espace de dimension finie et f ∈ L (E). Alors
(i) rang f = rang f> ;
(ii) χf = χf> ;
(iii) tr f = tr f> ;
(iv) det f = det f> ;
(v) dim ker(f − λidE) = dim ker(f> − λidE?) pour tout λ ∈ K.
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4.1 Formes bilinéaires

4.1.1 Définitions

Définition 4.1.1. Soit E un K-espace vectoriel. Une forme bilinéaire sur E est
une application ϕ : E × E → K qui est linéaire en chacune de ses variables,
c’est-à-dire que pour tout x ∈ E, les applications

y 7→ ϕ(x, y) et y 7→ ϕ(y, x)

sont des formes linéaires. Une forme bilinéaire ϕ sur E est dite symétrique si

ϕ(x, y) = ϕ(y, x), x, y ∈ E.

On notera B(E) l’espace des formes bilinéaires sur E.

Définition 4.1.2. Soit E un K-espace vectoriel. Une forme bilinéaire symétrique
ϕ : E × E → K est dite positive, ce qu’on écrit ϕ > 0, si

ϕ(x, x) > 0, x ∈ E.

Une forme bilinéaire symétrique ϕ est dite définie positive si ϕ > 0 et si pour tout
x ∈ E,

ϕ(x, x) = 0 =⇒ x = 0.

Une forme bilinéaire symétrique définie positive est un produit scalaire sur E.
Un K-espace vectoriel E muni d’un produit scalaire ϕ = (·, ·) est appelé espace
préhilbertien. Si de plus E est de dimension finie, alors E est un espace euclidien.

On notera S (E) l’espace des formes bilinéaires symétriques sur E et S+(E)
(resp. S++(E)) l’espace des formes bilinéaires symétriques positives (resp. définies
positives) sur E.

Remarque 4.1.3. Si K = C, alors S+(E) = {0} et S++(E) = ∅.

4.1.2 Matrice d’une forme bilinéaire

Supposons dans ce paragraphe que E de dimension finie n. Soit e = (e1, . . . , en)
est une base de E. À toute forme bilinéaire ϕ : E ×E → K, on associe la matrice
[ϕ]e ∈ Mn(K) de ϕ dans la base e la matrice dont le coefficient en place (i, j) est

ϕ(ei, ej).

Pour x, y ∈ E, la bilinéarité de ϕ implique

ϕ(x, y) = t[x]e · [ϕ]e · [y]e. (4.1)
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Proposition 4.1.4. Si f est une autre base de E, on a la formule de changement
de base

[ϕ]f = tP · [ϕ]e · P où P = Pe,f .

Démonstration. La matrice de changement de base P = (pi,j) = Pe,f de e vers f
est définie par les relations

fj =
n∑
i=1

pi,jei, j = 1, . . . , n.

Le coefficient en place (i, j) de [ϕ]f est donné par

ϕ(fi, fj) =
n∑
k=1

n∑
`=1

pk,ip`,jϕ(ek, e`),

qui est exactement le coefficient en place (i, j) de tP [ϕ]eP .

Observons aussi que ϕ est symétrique si sa matrice dans n’importe quelle base
est symétrique. Le sens direct est évident, et si [ϕ]e est symétrique pour une
certaine base e, alors l’identité (4.1) montre que ϕ est symétrique.

La Proposition 4.1.4 implique que rang[ϕ]e = rang[ϕ]f pour toutes bases e, f
de E. Ceci suggère la définition suivante.

Définition 4.1.5. Le rang d’une forme bilinéaire ϕ : E ×E → K est définie par

rangϕ = rang[ϕ]e

pour n’importe quelle base e.

4.1.3 Formes quadratiques

Définition 4.1.6. Une forme quadratique sur E est une application q : E → K
telle que

q(x) = ϕ(x, x), x ∈ E,
pour une forme bilinéaire symétrique ϕ.

On notera Q(E) l’espace des formes quadratiques sur E.

Remarque 4.1.7. On peut supprimer le terme “symétrique” dans la définition ci-
dessus. En effet, si q(x) = ϕ(x, x) avec ϕ une forme bilinéaire, on a q(x) = ϕ̃(x, x)
où

ϕ̃(x, y) =
1

2
(ϕ(x, y) + ϕ(y, x)) , x, y ∈ E,

et la forme ϕ̃ ainsi définie est symétrique.
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Proposition 4.1.8. Soit ϕ une forme bilinéaire symétrique sur E et q la forme
quadratique associée. Alors pour tous x, y ∈ E et λ ∈ K on a

(i) q(λx) = λ2q(x) ;

(ii) 2ϕ(x, y) = q(x+ y)− q(x)− q(y) ;

(iii) q(x+ y) + q(x− y) = 2(q(x) + q(y)).

Corollaire 4.1.9 (Formules de polarisation). Soit ϕ une forme bilinéaire symé-
trique sur E et q la forme quadratique associée. Pour tous x, y ∈ E on a

ϕ(x, y) =
q(x+ y)− q(x)− q(y)

2
=
q(x+ y)− q(x− y)

4
.

En particulier, si q est une forme quadratique, il existe une unique forme bilinéaire
symétrique ϕ telle que ϕ(x, x) = q(x) pour tout x ∈ E, que l’on appelle forme
polaire de q.

Si q est une forme quadratique, on peut donc définir rang q = rangϕ où ϕ est
la forme polaire de q.

Démonstration de la Proposition 4.1.8. On a q(λx) = ϕ(λx, λx) = λ2ϕ(x, x) =
λ2q(x) par bilinéarité, d’où le point (i). Pour le second point, on remarque que
q(x+ y) = ϕ(x+ y, x+ y) = ϕ(x, x) + ϕ(y, y) + 2ϕ(x, y) par symétrie de ϕ, d’où
l’on déduit (ii). Enfin pour le troisième point on remarque que le second donne
2ϕ(x,−y) = q(x − y) − q(x) − q(y). En remarquant que ϕ(x,−y) = −ϕ(x, y) et
en combinant ce qui précède avec l’égalité (ii), on obtient le résultat voulu.

Exercice 4.1.10. Montrer que q : E → K est une forme quadratique si, et
seulement si, pour tous λ ∈ K et x, y ∈ E on a

q(λx) = λ2q(x) et q(x+ y) + q(x− y) = 2(q(x) + q(y)).

Si E est de dimension finie, e = (e1, . . . , en) est une base de E, et q une forme
quadratique, on note [q]e = [ϕ]e où ϕ est la forme polaire de q. Alors la formule
(4.1) donne

q(x) = t[x]e · [q]e · [x]e =
∑

16i,j6n

ai,jxixj, x = x1e1 + · · ·+ xnen ∈ E,

où on a noté [q]e = (ai,j).
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4.1.4 Représentation des formes bilinéaires

Le théorème suivant nous dit qu’une forme bilinéaire n’est rien autre qu’une
application linéaire E → E?.

Théorème 4.1.11. Soit E un K-espace vectoriel. Alors l’application

Φ : B(E)→ L (E,E?), ϕ 7→ ιϕ

est un isomorphisme.

Démonstration. L’application Φ est injective : si ιϕ = 0, alors ϕ(v, ·) = 0 pour
tout v ∈ E, donc ϕ(v, w) = 0 pour tous v, w ∈ E, c’est-à-dire ϕ = 0. Montrons
que Φ est surjective. Soit f ∈ L (E,E?). On pose

ϕ(x, y) = 〈f(x), y〉, x, y ∈ E.

Alors ϕ est bilinéaire et pour tout x ∈ E on a Φ(ϕ)(x) = ιϕ(x) = ϕ(x, ·) = f(x)
par définition de ϕ, donc Φ(ϕ) = f .

4.1.5 Formes bilinéaires non dégénérées

Définition 4.1.12. Soit E un K-espace vectoriel et ϕ une forme bilinéaire sur E.
Alors on définit

Gϕ = {x ∈ E : ϕ(x, y) = 0, y ∈ E} et Dϕ = {x ∈ E : ϕ(y, x) = 0, y ∈ E} .

les noyaux à gauche et à droite de ϕ. Si de plus ϕ est symétrique, alors Gϕ = Dϕ

et on pose
kerϕ = ker q = Gϕ = Dϕ

où q est la forme quadratique associée à ϕ.

Remarque 4.1.13. Si iso q = {x ∈ E : q(x) = 0} est le cône des vecteurs
isotropes de q, alors on a ker q ⊂ iso q ; l’inclusion inverse est fausse en général.
En effet, si E = R2 et q(x) = x2

1 − x2
2 pour x = (x1, x2) ∈ E, on a

ker q = {0} et iso q = {(x1, x2) : x2
1 = x2

2}.

Proposition 4.1.14. Si E est de dimension finie et ϕ est une forme bilinéaire
sur E alors

dimGϕ = dimDϕ = dimE − rangϕ.
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Démonstration. Soit e une base de E. Soit x ∈ E. Alors x ∈ Gϕ si et seulement
si pour tout y ∈ E, ce qui équivaut à dire

t[x]f [ϕ]e[y]e = 0, y ∈ E.

Par conséquent, x ∈ Gϕ si et seulement si

t[x]e[ϕ]e = 0,

c’est-à-dire si et seulement si [x]e appartient au noyau de la matrice t[ϕ]e. On en
déduit que

dimGϕ = dim ker t[ϕ]e = n− rang t[ϕ]e = n− rangϕ.

De même, on montre que dimDϕ = n− rangϕ.

Définition 4.1.15. Soit E un K-espace vectoriel de dimension finie et ϕ une
forme bilinéaire sur E. On dit que ϕ est non dégénérée si Gϕ = Dϕ = {0}.

Théorème 4.1.16 (Théorème de représentation de Riesz généralisé). Soit E un
K-espace vectoriel de dimension finie n et ϕ une forme bilinéaire non dégénérée
sur E. Alors l’application

ιϕ : E → E?, v 7→ ϕ(v, ·),

est un isomorphisme. Autrement dit, pour tout ` ∈ E?, il existe un unique vecteur
`]ϕ ∈ E tel que

`(x) = ϕ(`]ϕ , x), x ∈ E.

Démonstration. L’application ιϕ : E → E? est linéaire. De plus on a

ker ιϕ = Dϕ = Gϕ = {0}

par hypothèse. Par suite ιϕ est injective ; comme dimE = n = dimE?, on en
déduit que ιϕ est un isomorphisme. En notant `]ϕ = (ιϕ)−1(`) pour ` ∈ E? on a

ϕ(`]ϕ , x) = `(x), x ∈ E,

par définition de ιϕ. Par bijectivité de ϕ, le vecteur `]ϕ est unique.
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4.1.6 Adjoint d’un endomorphisme

Théorème–Définition 4.1.17 (Endomorphisme ϕ-adjoint). Soit E un K-espace
de dimension finie et ϕ ∈ B(E) non dégénérée. Alors pour tout f ∈ L (E), il
existe un unique f ?,ϕ ∈ L (E) tel que le diagramme

E
ιϕ−−−→ E?

f?,ϕ
y yf>
E −−−→

ιϕ
E?

commute, i.e. ιϕ ◦ f ?,ϕ = f> ◦ ιϕ. Ceci s’écrit encore

ϕ(x, f(y)) = ϕ
(
f ?,ϕ(x), y

)
, x, y ∈ E.

L’endomorphisme f ?,ϕ est appelé endomorphisme adjoint de f pour ϕ.

Démonstration. Si f ?,ϕ existe, alors nécessairement f ?,ϕ = ι−1
ϕ ◦ f> ◦ ιϕ. Récipro-

quement, l’endomorphisme ι−1
ϕ ◦f>◦ιϕ vérifie les conditions demandées. On vérifie

qu’on a bien, pour x, y ∈ E,

ϕ(x, f(y)) = 〈ιϕ(x), f(y)〉 = 〈(f> ◦ ιϕ)(x), y〉 = ϕ
([
ι−1
ϕ ◦ f> ◦ ιϕ

]
(x), y

)
,

et le dernier terme est exactement ϕ
(
f ?,ϕ(x), y

)
.

Proposition 4.1.18. Soit E un K-espace de dimension finie et e une base de E.
Soit ϕ ∈ B(E) non dégénérée. Alors

[f ]e = [ϕ]−1
e · t[f ?,ϕ]e · [ϕ]e.

Démonstration. Par définition, on a f ?,ϕ = ι−1
ϕ ◦ f> ◦ ιϕ. Soit e? = (e?1, . . . , e

?
n) la

base duale de e. Alors

[f ?,ϕ]e = [ιϕ]−1
e?,e

[
f>
]
e?

[ιϕ]e?,e

où [ιϕ]e?,e est la matrice de ιϕ : E → E? dans la base e vers la base e?. Remarquons
que

ιϕ(ej) =
n∑
i=1

〈ιϕ(ej), ei〉e?i =
n∑
i=1

ϕ(ej, ei)e
?
i .

Par suite [ιϕ]e?,e = t[ϕ]e et on obtient

[f ?,ϕ]e = t[ϕ]−1
e · t[f>]e · t[ϕ]e.

Puisque
[
f>
]
e?

= t[f ]e, on obtient l’égalité désirée.
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Proposition 4.1.19 (Propriétés de l’adjoint). Soit E un K-espace vectoriel de
dimension finie et ϕ ∈ B(E) une forme bilinéaire non dégénérée. Alors pour tous
f, g ∈ L (E) et λ ∈ K, on a
(i) (f + g)?,ϕ = f ?,ϕ + g?,ϕ ;
(ii) (λf)?,ϕ = λf ?,ϕ ;
(iii) (f ◦ g)?,ϕ = g?,ϕ ◦ f ?,ϕ ;
(iv) (f ?,ϕ)?,ϕ = f ;
(v) id?,ϕE = idE.

Démonstration. Soient λ ∈ K et f, g ∈ L (E). Soient x, y ∈ E. On a

ϕ((λf + g)?,ϕ(x), y) = ϕ(x, (λf + g)(y))

= ϕ(x, λf(y)) + ϕ(x, g(y))

= ϕ(λf ?,ϕ(x), y) + ϕ(g?,ϕ(x), y)

= ϕ((λf ?,ϕ + g?,ϕ)(x), y).

Cette égalité étant vraie pour tout y ∈ E, on en déduit que

(λf + g)?,ϕ(x) = λf ?,ϕ(x) + g?,ϕ(x)

pour tout x ∈ E, d’où les propriétés (i) et (ii). Pour (iii), on remarque que pour
tous x, y ∈ E on a

ϕ((f ◦ g)?,ϕ(x), y) = ϕ(x, (f ◦ g)(y)) = ϕ(f ?,ϕ(x), g(y)) = ϕ((g?,ϕ ◦ f ?,ϕ)(x), y).

Puisque ϕ est non dégénérée et que l’égalité ci-dessus est vraie pour tous x, y,
on obtient (f ◦ g)?,ϕ(x) = g?,ϕ ◦ f ?,ϕ(x) pour tout x, d’où l’égalité souhaitée. La
propriété (iv) s’obtient en appliquant deux fois la définition de l’adjoint, et (v) est
immédiate.

4.2 Loi d’inertie de Sylvester

4.2.1 Orthogonalité

Définition 4.2.1. Soit E un K-espace vectoriel et ϕ : E × E → K une forme
bilinéaire. Une famille (u1, . . . , uk) est dite orthogonale pour ϕ si

ϕ(ui, uj) = 0, 1 6 i 6= j 6 k.

Proposition 4.2.2. Soit E un K-espace vectoriel de dimension finie n et ϕ une
forme bilinéaire symétrique sur E. Alors il existe une base (e1, . . . , en) de E qui
est orthogonale pour ϕ, et telle que ϕ(ek, ek) = 0 si et seulement si k > r, où on
a noté r = rangϕ.
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Démonstration. On procède par récurrence sur la dimension. Si n = 1, c’est au-
tomatique. Supposons la propriété vraie en dimension n − 1 > 2, et prenons ϕ
une forme bilinéaire symétrique sur un espace E de dimension n. On considère
q : E → K la forme quadratique associée. Si celle-ci est nulle, alors ϕ l’est aussi
par le Corollaire 4.1.9. En particulier r = 0 et n’importe quelle base est orthogo-
nale pour ϕ. Sinon, il existe e1 ∈ E tel que q(e1) 6= 0. On considère ` : E → K la
forme linéaire définie par

`(x) = ϕ(e1, x), x ∈ E.

(Autrement dit ` = ιϕ(e1).) Alors ` est non nulle, puisque `(e1) 6= 0 ; par consé-
quent G = ker ` est de dimension n − 1. Comme q(e1) 6= 0 on a G ∩ Ke1 = {0}
d’où l’on tire

E = G⊕Ke1.

La restriction ϕ|G×G est une forme bilinéaire symétrique sur G. En appliquant
l’hypothèse de récurrence, il existe (e2, . . . , en) une base de G telle que ϕ(ei, ej) = 0
si 2 6 i 6= j 6 n, et ϕ(ej, ej) 6= 0 ssi j 6 r pour un certain r > 1. En outre
ϕ(e1, ej) = 0 si j > 1 puisque dans ce cas on a ej ∈ G = ker `. Ainsi la base
e = (e1, . . . , en) est orthogonale pour ϕ. Dans cette base, la matrice de ϕ est
diagonale et ses éléments diagonaux sont les ϕ(ej, ej) avec 1 6 j 6 n, et on a
ϕ(ej, ej) 6= 0 ssi j 6 r. On a alors rangϕ = rang[ϕ]e = r, ce qui conclut la
démonstration.

Définition 4.2.3. Soit E un K-espace vectoriel, F ⊂ E et ϕ : E × E → K
une forme bilinéaire symétrique. L’espace ϕ-orthogonal de F , noté F⊥ϕ ⊂ E, est
définie par

F⊥,ϕ = {x ∈ E : ϕ(x, y) = 0, y ∈ F}.

Proposition 4.2.4. Si E est un K-espace vectoriel, ϕ ∈ B(E) est symétrique et
F ⊂ E alors

dimF⊥,ϕ + dimF = n+ dim(F ∩ kerϕ).

Démonstration.

4.2.2 Loi d’inertie de Sylvester

Définition 4.2.5. Soit E un R-espace vectoriel de dimension finie, q une forme
quadratique sur E et ϕ sa forme polaire. La signature de ϕ (ou de q) est le couple
(p, q) ∈ N2 où p et q sont respectivement donnés par la dimension maximale d’un
sous-espace sur lequel ϕ est définie positive (respectivement définie négative).
Autrement dit, on a

p = max
{

dimF : F ⊂ E, q(x) > 0, x ∈ F \ {0}
}
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tandis que q est donné par

q = max
{

dimF : F ⊂ E, q(x) < 0, x ∈ F \ {0}
}
.

Le théorème suivant montre que deux formes quadratiques réelles sont équi-
valentes si et seulement si elles ont même signature.

Théorème 4.2.6 (Loi d’inertie de Sylvester). Soit E un R-espace vectoriel de
dimension finie n, ϕ une forme bilinéaire symétrique sur E, r = rangϕ et (p, q)
la signature de ϕ. Alors p+ q = r et il existe une base e de E la matrice [ϕ]e est
diagonale par blocs et donnée par

[ϕ]e =

Ö
Ip 0

−Iq

0 0

è
,

Autrement dit, si x = x1e1 + · · ·+ xnen et y = y1e1 + · · ·+ ynen sont des éléments
de E avec xj, yj ∈ R, on a

ϕ(x, y) =

p∑
j=1

xjyj −
q∑

j=p+1

xjyj.

Démonstration. Soit ẽ une base de E qui est orthogonale pour ϕ, et telle que
ϕ(ẽj, ẽj) est non nul ssi 1 6 j 6 r. Soit p̃ le cardinal de l’ensemble des j vérifiant
ϕ(ẽj, ẽj) > 0 ; quitte à réordonner les ej, on peut supposer ϕ(ẽj, ẽj) > 0 ssi
1 6 j 6 p de sorte que ϕ(ẽj, ẽj) < 0 pour tout p̃+ 1 6 j 6 r. On pose

ej = |ϕ(ej, ej)|−1/2 ẽj, j = 1, . . . , r.

Alors |ϕ(ej, ej)| = 1 pour tout 1 6 j 6 r, donc

ϕ(ej, ej) = 1 si 1 6 j 6 p̃ et ϕ(ej, ej) = −1 si p̃+ 1 6 j 6 r.

Il reste à montrer que p̃ = p et que r − p = q où (p, q) est la signature de ϕ. Si
G = vect(e1, . . . , ep̃), on a q(x) > 0 pour pour tout x ∈ G non nul. Ainsi on a
bien p > dimG = p̃. Réciproquement, montrons que p̃ > p. Soit F un sous-espace
sur lequel ϕ est définie positive et posons G = vect(ep+1, . . . , en). Puisque ϕ est
définie positive sur F , on a G ∩ F = {0}. Par conséquent

dimF 6 n− dimG = p,

d’où l’on tire p̃ 6 p. En appliquant ce qui précède à la forme quadratique ϕ on
obtient r − p̃ = q, d’où p+ q = r. Ceci achève la démonstration.
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4.2.3 Formes quadratiques complexes

Théorème 4.2.7 (Forme normale pour les formes quadratiques complexes). On
suppose ici K = C. Soit E un C-espace vectoriel de dimension finie n, ϕ une
forme bilinéaire symétrique sur E et r = rangϕ. Alors il existe une base e de E
telle que

[ϕ]e =

Ç
Ir 0

0 0

å
.

Autrement dit, si x = x1e1 + · · ·+ xnen et y = y1e1 + · · ·+ ynen sont des éléments
de E avec xj, yj ∈ C, on a

ϕ(x, y) =
r∑
j=1

xjyj.

Démonstration. On se donne ẽ = (ẽ1, . . . , ẽn) une base orthogonale pour ϕ telle
que ϕ(ẽj, ẽj) 6= 0 est non nul ssi 1 6 q 6 r. Pour tout j, soit αj ∈ C une racine
complexe de ϕ(ẽj, ẽj), c’est-à-dire qui vérifie α2

j = ϕ(ẽj, ẽj). On pose ej = α−1
j ẽj

pour tout 1 6 j 6 r et ej = ẽj si j > r. Alors par bilinéarité on a

ϕ(ej, ej) = α−2
j ϕ(ẽj, ẽj) = 1

pour tout j = 1, . . . , r et ϕ(ej, ej) = 0 si j > r. En outre la base e = (e1, . . . , en)
est orthogonale pour ϕ, ce qui achève la démonstration.

4.3 Espaces euclidiens

4.3.1 Définitions et premières propriétés

Définition 4.3.1. Un espace euclidien
(
E, ( · | · )

)
est la donnée d’un R-espace

vectoriel E de dimension finie, muni d’un produit scalaire ( · | · ) sur E — c’est-à-
dire une forme bilinéaire symétrique définie positive. Pour tout x ∈ E, la norme
euclidienne de x est donnée par

‖x‖ =
»

(x|x)

Il est facile de vérifie que ‖ · ‖ est bien une norme sur E, c’est-à-dire qu’on a x = 0
ssi ‖x‖ = 0 et pour tous λ ∈ R et x, y ∈ E,

‖λx‖ = |λ| · ‖x‖ et ‖x+ y‖ 6 ‖x‖+ ‖y‖.

Une base orthonormale (e1, . . . , en) de E est une base orthogonale pour ( · | · ) telle
que ‖ej‖ = 1 pour tout j = 1, . . . , n.
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Remarque 4.3.2. Par le Théorème 4.2.6, on sait que dans tout espace euclidien,
il existe toujours une base ortho-normale. Dans une telle base, la matrice de
ϕ = ( · | · ) est donnée par In.

Théorème 4.3.3 (Pythagore). Soit (E, ( · | · )) un espace euclidien et (u1, . . . , uk)
une famille orthogonale. Alors∥∥∥∥∥

k∑
`=0

u`

∥∥∥∥∥
2

=
k∑
`=0

‖u`‖2.

Démonstration. On a par bilinéarité et par orthogonalité∥∥∥∥∥
k∑
`=0

u`

∥∥∥∥∥
2

=

(
k∑
`=0

u`

∣∣∣∣∣
k∑
`=0

u`

)
=

∑
06j,`6k

(uj|u`) =
k∑
`=0

‖u`‖2,

ce qui est l’égalité voulue.

4.3.2 Endomorphisme adjoint

Soit
(
E, ( · | · )

)
un espace euclidien. Si f ∈ L (E), on notera f ? = f ?,ϕ où

ϕ = ( · | · ), cf. le Théorème-Définition 4.1.17. Autrement dit, f ? ∈ L (E) est
défini par

(x|f(y)) = (f ?(x)|y), x, y ∈ E.

On notera aussi F⊥ = F⊥,ϕ pour tout sous-espace F ⊂ E. Une application im-
médiate de la Proposition 4.1.19 est la suivante.

Proposition 4.3.4 (Propriétés de l’adjoint euclidien). Soit
(
E, ( · | · )

)
un espace

euclidien. Alors pour tous f, g ∈ L (E) et λ ∈ R, on a

(i) (f + g)? = f ? + g? ;

(ii) (λf)? = λf ? ;

(iii) (f ◦ g)? = g? ◦ f ? ;
(iv) (f ?)? = f ;

(v) id?E = idE.

Définition 4.3.5. On dit que f ∈ L (E) est auto-adjoint ou symétrique (resp.
anti auto-adjoint ou anti-symétrique) si f = f ? (resp. f = −f ?). On notera S (E)
(resp. A (E)) l’espace des endomorphismes symétriques.

Une application directe de la Proposition 4.1.18 est la suivante.
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Proposition 4.3.6. Soit e une base orthonormale de E. Alors pour tout f ∈
S (E), on a

[f ?]e = t[f ]e.

Ainsi l’espace S (E) (resp. A (E)) est un sous-espace de dimension n(n + 1)/2
(resp. n(n− 1)/2) de L (E).

Proposition 4.3.7 (Préservation des orthogonaux). Soit f ∈ S (E) et F ⊂ E
qui est stable par f . Alors F⊥ est stable par f .

Démonstration. Soit x ∈ F⊥. Pour tout y ∈ F , on a f(y) ∈ F par hypothèse et
comme f ∈ S (E), on obtient

(f(x)|y) = (x|f(y)) = 0.

Ainsi f(x) ∈ F⊥ et f(F⊥) ⊂ F⊥.

4.3.3 Théorème spectral

Théorème 4.3.8 (Théorème spectral pour les endomorphismes). Soit
(
E, ( · | · )

)
un espace euclidien et f ∈ S (E). Alors il existe une base orthonormale e de E
telle que [f ]e est diagonale.

Avant de donner la preuve du théorème spectral, énonçons trois résultats in-
termédiaires.

Lemme 4.3.9 (Existence d’une droite ou d’un plan stable pour les endomorphismes
réels). Soit E un R-espace vectoriel de dimension n > 1 et f ∈ L (E). Alors il
existe F ⊂ E un sous-espace de dimension 1 ou 2 qui est stable par f .

Démonstration. On peut supposer E = Rn. Si χf admet une racine, alors f admet
un vecteur propre x et F = Rx est stable par f . Sinon, χf n’a que des racines
dans C\R. Comme χf est un polynôme réel, on a χf (λ) = χf (λ̄) pour tout λ ∈ C,
donc λ est une racine de χf ssi λ̄ en est une. Par suite on peut écrire

χf =
r∏
j=1

(X − λj)αj(X − λ̄j)βj

où les λj ∈ C sont deux à deux distincts. En utilisant encore que χf est réel, on
voit que αj = βj. Le théorème de Cayley–Hamliton et lemme des noyaux donnent
alors

E =
r⊕
j=1

ker(Qj(f)αj) où Qj = (X − λj)(X − λ̄j) ∈ R[X].
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En particulier il existe j tel que ker(Qj(f)αj) n’est pas réduit à {0} donc kerQj(f)
non plus. Mais alors si x ∈ kerQj(f) \ {0}, on a

0 = Qj(f)(x) = f 2(x)− 2Re(λj)f(x) + |λj|2x,

donc f 2(x) est combinaison linéaire de f(x) et de x. Ainsi F = vect(x, f(x)) est
stable par f .

Lemme 4.3.10 (Orthogonalité des vecteurs propres d’un endomorphisme symé-
trique). Deux vecteurs propres d’un endomorphisme symétrique associés à des
valeurs propres (réelles) distinctes sont orthogonaux.

Démonstration. Soit E un espace euclidien et f ∈ S (E). Soient λ, µ ∈ R distincts
et x, y ∈ E tels que f(x) = λx et f(y) = µy. On a

λ(x|y) = (f(x)|y) = (x|f(y)) = µ(x|y),

donc (λ− µ)(x|y) ce qui donne (x|y) = 0.

Lemme 4.3.11 (Théorème spectral en dimension 2). Si dimF = 2 et g ∈ S (F ),
alors il existe une base orthonormale de vecteurs propres pour g.

Démonstration. Soit f une base orthonormale de F , et A = [g]f ∈ M2(R). Alors
A = (ai,j) est symétrique, donc son polynôme caractéristique s’écrit

χg = X2 − tr(A)X + det(A) = X2 − (a+ c) + ac− b2

où on a noté a = a1,1, c = a2,2 et b = a1,2 = a2,1. Si b = 0, alors A est diagonale et
il n’y a rien à démontrer. Sinon, le discriminant (a+c)2−4ac+4b2 = (a−c)2 +4b2

de χg est strictement positif, donc χg a deux racines distinctes. Par conséquent
il existe une base (e1, e2) de F formée de vecteurs propres de g. Le lemme 4.3.10
implique alors que la famille (e1, e2) est orthogonale. Quitte à remplacer ej par
ej/‖ej‖, on peut les supposer les ej de norme 1, de sorte que (e1, e2) est ortho-
normale.

Démonstration du théorème spectral. On raisonne par récurrence sur la dimen-
sion. Pour n = 1, c’est trivial, et le cas n = 2 découle du Lemme 4.3.11. On
suppose donc le résultat vrai en toute dimension 1 6 k 6 n − 1 pour n − 1 > 2.
Soit E un espace euclidien de dimension n. Le lemme 4.3.9 nous donne l’existe
d’un espace F de dimension 1 ou 2 tel que f(F ) ⊂ F . Soit g = f |F ∈ L (F ).
Alors par hypothèse de récurrence, il existe une base orthonormale f de F for-
mée de vecteurs propre de g (donc de f). Notons que F⊥ est stable par f par la
Proposition 4.3.7. Comme dimF⊥ 6 n− 1, l’hypothèse de récurrence nous donne
une base ortho-normale g de F⊥ qui est formée de vecteurs propres de f . Mais
alors f ⊕ g est une base orthonormale de E formée de vecteurs propres de f . La
récurrence est établie.
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On conclut ce paragraphe avec une démonstration alternative du théorème
spectral basée sur le calcul différentiel, qui n’utilise pas les trois lemmes précédents.
En particulier, elle n’utilise ni le lemme des noyaux ni le théorème de Cayley–
Hamilton.

Démonstration alternative du théorème spectral. On procède encore par récurrence
sur la dimension. Pour n = 1, c’est trivial, et on suppose le résultat vraie en di-
mension n − 1 > 1. Soit f ∈ L (Rn). Soit S = {x ∈ Rn : ‖x‖ = 1} la sphère
unité de Rn. Alors S est une partie compacte de Rn, donc l’application

Φ : S → R, x 7→ (f(x)|x)

admet un maximum qu’elle atteint en un point x? ∈ S. On affirme que x? est un
vecteur propre de S. En effet, soit F = Rx? et x ∈ F⊥ de norme 1. On pose

γ(t) = cos(t)x? + sin(t)x, t ∈ R.

Comme x ∈ F⊥ on a ‖γ(t)‖2 = cos2(t)‖x?‖2 + sin2(t)‖x‖2 = 1 pour tout t, donc
γ(t) ∈ S. En outre, on a

Φ(γ(t)) =
(

cos(t)f(x?) + sin(t)f(x)
∣∣∣ cos(t)x? + sin(t)x

)
= cos(t)2Φ(x?) + sin(t)2Φ(x) + 2 cos(t) sin(t)(f(x?)|x).

Comme γ admet un maximum au point t = 0, on a γ′(0) = 0 ce qui donne
0 = 2(f(x?)|x). Par conséquent f(x?) ⊥ x. Ceci étant vrai pour tout x ∈ F⊥ on
obtient f(x?) ∈ (F⊥)⊥ = F = Rx? donc x? est vecteur propre de f . En outre f
préserve aussi F⊥ et par hypothèse de récurrence il existe une base orthonormale
g de F⊥ formée de vecteurs propres de f . Comme x? ∈ S, la base e = x? ⊕ g est
orthonormale et formée de vecteurs propres de f . La récurrence est établie.

4.4 Endomorphismes orthogonaux

Dans cette section, on se donne
(
E, ( · | · )

)
un espace euclidien. En particulier,

K = R.

4.4.1 Définitions, premières propriétés

Définition 4.4.1. Un endomorphisme f ∈ L (E) est dit orthogonal si pour tous
x, y ∈ E, on a

(f(x)|f(y)) = (x|y).

On note O(E) l’ensemble des endomorphismes orthogonaux de E.
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En particulier pour tout f ∈ O(E), on a

‖f(x)‖2 = ‖x‖2, x ∈ E.

Définition 4.4.2. Une matrice A ∈ Mn(R) est dite orthogonale si tAA = In. On
note On(R) l’espace des matrice orthogonales.

Proposition 4.4.3. Soit f ∈ L (E). Alors les propriétés suivantes sont équiva-
lentes :
(i) f est orthogonal ;
(ii) f est un isomorphisme et f−1 = f ? ;
(iii) il existe une base de E dont l’image par f est une base orthonormale de E ;
(iv) l’image par f de toute base orthonormale de E est une base orthonormale

de E ;
(v) il existe une base orthonormale e de E telle que la matrice [f ]e est orthogo-

nale ;
(vi) pour toute base orthonormale e de E, la matrice [f ]e est orthogonale.

Démonstration. L’équivalence entre (i), (ii), (iii) et (iv) est immédiate. L’équiva-
lence entre (iii) et (v) découle de la Proposition 4.3.6. Les implications (iii)⇒ (iv)
et (v) ⇒ (vi) sont triviales.

Proposition 4.4.4. Une matrice est orthogonale si et seulement si c’est la ma-
trice de passage entre deux bases orthogonales de E.

Démonstration. Soit A ∈ On(R). Soit e = (e1, . . . , en) une base orthonormée de
E et f ∈ L (E) telle que [f ]e = A. Alors f est un endomorphisme orthogonal,
donc f = (f(e1), . . . , f(en)) est une base orthonormée de E. Il suit que [f ]e est la
matrice de passage de e à f .

Théorème 4.4.5 (Théorème spectral pour les matrices). Soit A ∈ Mn(R) une
matrice symétrique. Alors il existe Q ∈ On(R) et une matrice diagonale D telles
que

D = Q−1AQ = tQAQ.

Démonstration. Soit A symétrique. Soit f ∈ L (Rn) l’endomorphisme canonique-
ment associé à A. Alors f est symétrique donc il existe une base orthonormée e
formée de vecteurs propres de f , de sorte que D = [f ]e est diagonale. Si b est la
base canonique de Rn, on note Q la matrice de passage de b à e. Alors

D = [f ]e = Q−1[f ]bQ = Q−1AQ = tQAQ

puisque Q est orthogonale.
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Proposition 4.4.6. Soit f ∈ O(E). Alors det(f) = ±1.

Démonstration. Soit e une base orthonormale de E. Alors [f ]e est une matrice
orthogonale, donc

1 = det
(
[f ]−1

e [f ]e
)

= det
(
t[f ]e[f ]e

)
= det([f ]e)

2,

d’où le résultat.

4.4.2 Classification des endomorphismes orthogonaux en
dimension 3

Dans ce paragraphe nous démontrons le résultat suivant.

Théorème 4.4.7 (Endomorphismes orthogonaux en dimension 3). On suppose
que E est un espace euclidien de dimension n = 3. Soit f ∈ O(E). Alors il existe
une base orthonormale e et des réels λ, η ∈ {−1, 1} et θ ∈ R tels que

[f ]e =

Ñ
λ 0 0
0 cos θ −η sin θ
0 sin θ η cos θ

é
.

Remarque 4.4.8. Le Théorème 4.4.7 dit que tout endomorphisme orthogonal
de R3 est soit une rotation autour d’un axe, soit une symétrie orthogonale par
rapport à un plan suivi d’une rotation autour de l’axe perpendiculaire à ce plan.

Nous aurons besoin du résultat analogue en dimension 2.

Théorème 4.4.9 (Endomorphismes orthogonaux en dimension 2). On suppose
que E est un espace euclidien de dimension n = 2. Soit f ∈ O(E). Alors il existe
une base orthonormale e et θ ∈ R tels que

[f ]e =

Å
cos θ −η sin θ
sin θ η cos θ

ã
.

où η = det f ∈ {−1, 1}.

Démonstration. Soit e = (e1, e2) une base orthonormale de E. Écrivons f(e1) =
αe1 + βe2 avec α, β ∈ R. Comme f est orthogonal, on a

1 = ‖f(e1)‖2 = α2 + β2.

Par suite il existe θ ∈ R tel que α = cos θ et β = sin θ. Comme f(e2) est orthogonal
à e1 et ‖f(e2)‖2 = 1 on a f(e2) = η(− sin(θ)e1 + cos(θ)e2) avec η = ±1. Alors [f ]e
est de la forme annoncée et on calcule η = det[f ]e = det f .
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Démonstration du Théorème 4.4.7. On suppose que E est un espace euclidien de
dimension 3. Soit f ∈ O(E). Alors χf ∈ R3[X] donc χf admet au moins une
racine réelle, que l’on note λ ∈ R. Soit x ∈ E non nul un vecteur propre associé
de norme 1. On a

1 = ‖x‖2 = ‖f(x)‖2 = ‖λx‖2 = |λ|

donc λ = ±1. Soit F = (Rx)⊥. Alors pour tout y ∈ F , on a, puisque x = ηf(x),

(f(y)|x) = η(f(y)|f(x)) = η(y|x) = 0.

Par conséquent f préserve F . Par le Théorème 4.4.9, il existe une base f de F et
des réels η ∈ {−1, 1} et θ ∈ R tels que

[f |F ]f =

Å
cos θ −η sin θ
sin θ η cos θ

ã
.

Soit e = x⊕ f . Alors on a

[f ]e =

Ñ
λ 0 0
0 cos θ −η sin θ
0 sin θ η cos θ

é
,

et on calcule λη = det f .
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