Exercice 1.— Montrer que $C_c^{\infty}(\mathbb{R}^d)$ est dense dans $S(\mathbb{R}^d)$ i.e. que, pour tout $\varphi \in S(\mathbb{R}^d)$, il existe une suite $(\varphi_n)_{n \in \mathbb{N}}$ d'éléments de $C_c^{\infty}(\mathbb{R}^d)$ telle que

$$\forall \alpha, \beta \in \mathbb{N}^d, \quad p_{\alpha,\beta}(\varphi_n - \varphi) \underset{n \to +\infty}{\longrightarrow} 0.$$

Indic. Introduire $(\chi_n := \chi(\frac{\cdot}{n}))_{n \in \mathbb{N}^*}$, où $\chi \in \mathcal{C}^{\infty}(\mathbb{R}^d)$ vaut 1 sur B(0,1) et 0 sur $\mathbb{R}^d \setminus B(0,2)$.

Exercice 2.— Soit $f: \mathbb{R}^d \to \mathbb{C}$ une fonction appartenant à $L^p(\mathbb{R}^d)$, où $p \in [1, +\infty]$. Montrer qu'il existe $a \in \mathbb{R}$ tel que $\langle x \rangle^{-a} f \in L^1(\mathbb{R}^d)$.

Rappel: pour tout $c \in \mathbb{R}$, on définit $\langle x \rangle^c : x \in \mathbb{R}^d \mapsto \left(1 + \sum_{k=1}^d x_k^2\right)^{\frac{c}{2}} \in \mathbb{R}$.

Exercice 3.— Remarquons qu'il n'existe aucun réel a tel que $\langle x \rangle^{-a} \exp \in L^1(\mathbb{R})$. Nous souhaitons montrer qu'il n'existe en fait aucune distribution $T \in \mathcal{S}'(\mathbb{R}^d)$ vérifiant

$$T|_{\mathcal{C}_c^{\infty}(\mathbb{R})} = u_{\exp}, \text{ i.e telle que } \forall \varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}), \quad \langle T, \varphi \rangle_{\mathcal{S}',\mathcal{S}} = \int_{\mathbb{R}} e^x \varphi(x) \, dx.$$

On introduit pour cela les suites $\left(\chi_n := \chi(\frac{\cdot}{n})\right)_{n \in \mathbb{N}^*}$ et $\left(\varphi_n : x \mapsto e^{-x}\chi_n(x)\right)_{n \in \mathbb{N}^*}$, où $\chi \in \mathcal{C}^{\infty}(\mathbb{R})$ est une fonction positive égale à 1 sur [2,3] et à 0 sur $\mathbb{R} \setminus [1,4]$.

- 1. Montrer que φ_n appartient à $\mathcal{C}_c^{\infty}(\mathbb{R})$ pour tout $n \in \mathbb{N}^*$ et que la suite $(p_{\alpha,\beta}(\varphi_n))_{n \in \mathbb{N}^*}$ est bornée pour tous $\alpha, \beta \in \mathbb{N}$.
- 2. Montrer que $\int_{\mathbb{R}} e^x \varphi_n(x) dx \xrightarrow[n \to +\infty]{} +\infty$ et conclure.

Exercice 4.— Soit $f: x \in \mathbb{R} \mapsto e^x e^{ie^x} \in \mathbb{C}$.

- 1. Existe-t-il un réel a > 0 vérifiant $\langle x \rangle^{-a} f \in L^1(\mathbb{R})$?
- 2. Montrer que l'intégrale $\int_{\mathbb{R}} f(x)\varphi(x) dx$ est définie au sens de Riemann pour tout φ dans $\mathcal{S}(\mathbb{R})$ et que $u_f : \varphi \in \mathcal{S}(\mathbb{R}) \longmapsto \int_{\mathbb{R}} f(x)\varphi(x) dx$ définit un élément de $\mathcal{S}'(\mathbb{R})$.

Exercice 5.—

- 1. Dans $\mathcal{S}'(\mathbb{R})$, montrer que s'il existe $C \in \mathbb{C}$ tel que $T = u_C$, alors T' = 0.
- 2. Montrons l'implication réciproque et considérons donc $T \in \mathcal{S}'(\mathbb{R})$ telle que T' = 0.
 - (a) Montrer que $\{\varphi' \; ; \; \varphi \in \mathcal{C}^{\infty}_{c}(\mathbb{R})\} = \{\psi \in \mathcal{C}^{\infty}_{c}(\mathbb{R}) \, , \; \int_{\mathbb{R}} \psi \, dx = 0\}.$
 - (b) Soit $\chi \in \mathcal{C}_c^{\infty}(\mathbb{R})$ d'intégrale 1. Montrer la relation suivante et conclure,

$$\forall \varphi \in \mathcal{C}_c^{\infty}(\mathbb{R}), \quad \langle T, \varphi \rangle_{\mathcal{S}', \mathcal{S}} = \langle T, \chi \rangle_{\mathcal{S}', \mathcal{S}} \int_{\mathbb{R}} \varphi.$$

3. Résoudre les équations $T' = \delta_0$ et $T' = H := \mathbf{1}_{\mathbb{R}^+}$ (i.e. $T' = u_H$) dans $\mathcal{S}'(\mathbb{R})$.

Exercice 6.— Déterminer les dérivées successives de $\frac{x^n}{n!}H$ (où $n \in \mathbb{N}^*$) dans $\mathcal{S}'(\mathbb{R})$ ainsi que la dérivée de $x^{\alpha}H$, où $\alpha \in]0,1[$.

Exercice 7.—

1. Soit $\chi \in L^1(\mathbb{R}^d)$ telle que $\int_{\mathbb{R}^d} \chi(x) dx = 1$. Pour $n \in \mathbb{N}^*$ et $\alpha \in \mathbb{R}$, on définit

$$\chi_{n,\alpha}: x \in \mathbb{R}^d \longmapsto n^{\alpha} \chi(nx).$$

Étudier la convergence de la suite $(u_{\chi_{n,\alpha}})_{n\in\mathbb{N}^*}$ dans $\mathcal{S}'(\mathbb{R}^d)$ en fonction de α .

2. Montrer que les suites suivantes convergent dans $\mathcal{S}'(\mathbb{R})$ vers des limites que l'on précisera :

$$(u_{n^{10}e^{inx}})_{n\in\mathbb{N}^*}, (u_{\cos^2(nx)})_{n\in\mathbb{N}^*}, (u_{n\sin(nx)H})_{n\in\mathbb{N}^*}, (n(\delta_{\frac{1}{n}} - \delta_{-\frac{1}{n}}))_{n\in\mathbb{N}^*}, (\frac{1}{n}\sum_{k=0}^{n-1}\delta_{\frac{k}{n}})_{n\in\mathbb{N}^*}.$$

Exercice 8.—

1. Montrer que l'application

$$\operatorname{vp}(\frac{1}{x}) : \varphi \in \mathcal{S}(\mathbb{R}) \longmapsto \lim_{\varepsilon \to 0^+} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} \, dx \in \mathbb{C}$$

est bien définie et définit un élément de $\mathcal{S}'(\mathbb{R})$.

Indication. Étudier séparément $\lim_{\varepsilon \to 0^+} \int_{1 \ge |x| \ge \varepsilon} \frac{\varphi(x)}{x} dx$ en remarquant que $\varphi \in \mathcal{S}(\mathbb{R})$ s'écrit $\varphi = \varphi(0) + x\psi$ pour une fonction $\psi \in \mathcal{C}^{\infty}(\mathbb{R})$ telle que $\sup_{\mathbb{R}} |\psi| \le \sup_{\mathbb{R}} |\varphi'|$.

2. Même question pour

$$\mathrm{Pf}(\frac{1}{x^2}): \varphi \in \mathcal{S}(\mathbb{R}) \ \longmapsto \ \lim_{\varepsilon \to 0^+} \Big(\int_{|x| \ge \varepsilon} \frac{\varphi(x)}{x^2} \, dx - 2 \frac{\varphi(0)}{\varepsilon} \Big) \ \in \ \mathbb{C} \, .$$

- 3. Montrer que $x \operatorname{vp}(\frac{1}{x}) = 1$ et $x^2 \operatorname{Pf}(\frac{1}{x^2}) = 1$ dans $\mathcal{S}'(\mathbb{R})$.
- 4. Montrer que $(\ln |x|)' = \operatorname{vp}(\frac{1}{x})$ et que $\operatorname{vp}(\frac{1}{x})' = -\operatorname{Pf}(\frac{1}{x^2})$ dans $\mathcal{S}'(\mathbb{R})$.

Exercice 9.—

- 1. Montrer que $x\delta_0 = 0$ dans $\mathcal{S}'(\mathbb{R})$.
- 2. Montrer que si $T \in \mathcal{S}'(\mathbb{R})$ vérifie xT = 0, alors il existe $C \in \mathbb{C}$ tel que $T = C\delta_0$. Indication. Montrer d'abord que $\{x \mapsto x \varphi(x) ; \varphi \in \mathcal{C}_c^{\infty}(\mathbb{R})\} = \{\psi \in \mathcal{C}_c^{\infty}(\mathbb{R}), \psi(0) = 0\}$.
- 3. Résoudre dans $\mathcal{S}'(\mathbb{R})$ l'équation $x^pT = 0$, où $p \in \mathbb{N}^*$.
- 4. Résoudre les équations xT = 1 et $x^2T = 1$ dans $\mathcal{S}'(\mathbb{R})$, d'inconnue $T \in \mathcal{S}'(\mathbb{R})$.

Exercice 10.— Pour $\varepsilon > 0$, soit T_{ε} la distribution donnée par la fonction $f_{\varepsilon} : \mathbb{R} \to \mathbb{C}$ suivante $f_{\varepsilon}(x) = \ln(x + i\varepsilon) = \ln|x + i\varepsilon| + i\arg(x + i\varepsilon)$ (avec $\arg(x + i\varepsilon) \in]-\pi,\pi[$).

- 1. Montrer que la suite (T_{ε}) converge dans $\mathcal{S}'(\mathbb{R})$ vers une distribution T_0 associée à une fonction f_0 que l'on précisera.
- 2. Calculer T_0'
- 3. En déduire que $\lim_{\varepsilon \to 0^+} \frac{1}{x+i\varepsilon} = \frac{1}{x+i0} := -i\pi\delta_0 + \operatorname{vp}(\frac{1}{x})$ dans $\mathcal{S}'(\mathbb{R})$.