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Feuille d’exercices 3

Dualité

I — Formes linéaires

Exercice 1

1. Montrer qu’il existe une forme linéaire l sur R3 vérifiant

l(1, 1, 1) = 0, l(2, 0, 1) = 1 et l(1, 2, 3) = 4.

2. Une telle forme est-elle unique ? Donner la dimension et une base du noyau de l.

Exercice 2 Soient a et b deux nombres réels tels que a < b. Montrer qu’il existe un unique
triplet (α, β, γ) ∈ R3 vérifiant∫ b

a
P (t) dt = αP (a) + βP

(
a+b
2

)
+ γP (b)

pour tout polynôme P de degré inférieur ou égal à 2.

Indication : traduire l’énoncé dans le langage des formes linéaires.

Exercice 3 (?) Soit E un K-espace vectoriel de dimension finie.

1. Montrer que si H est un hyperplan de E, alors il existe a /∈ H, a 6= 0 tel que E =
H ⊕Vect(a).

2. Montrer l’équivalence

H est un hyperplan de E ⇔ H est le noyau d’une forme linéaire non nulle.

3. Soit E =Mn(R) l’espace vectoriel des matrices n× n à coefficients réels et soit H ⊂ E le
sous-ensemble de E formé des matrices de trace nulle. Montrer que H est un sev de E et que
E = H ⊕Vect(In).

II — Bases duales, préduales

Exercice 4 Soit R3 muni de sa base canonique b = (e1, e2, e3) et soit b∗ = (e∗1, e
∗
2, e
∗
3) la base

duale de b. On considère la famille de vecteurs :

(u1 = (1,−1, 1), u2 = (1, 0, 1), u3 = (0, 2,−1)).

1. Montrer que (u1, u2, u3) est une base de R3.

2. Déterminer la base duale (u∗1, u
∗
2, u
∗
3) de (u1, u2, u3) en fonction de (e∗1, e

∗
2, e
∗
3).
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Exercice 5 Soient l1 et l2 les deux formes linéaires sur R2 définies par

l1(x, y) = x+ y et l2(x, y) = x− y.

1. Montrer que (l1, l2) forme une base de (R2)∗.

2. Exprimer les formes linéaires f et g suivantes dans cette base :

f(x, y) = x et g(x, y) = 2x− 6y

3. Déterminer une base (u1, u2) de R2 dont la base duale est (l1, l2).

Exercice 6 Soient a1, a2, a3 et a4 quatre nombres réels deux à deux distincts. On considère
les quatre polynômes de degré 3 suivants :

P1(X) =
(X − a2)(X − a3)(X − a4)
(a1 − a2)(a1 − a3)(a1 − a4)

, P2(X) =
(X − a1)(X − a3)(X − a4)
(a2 − a1)(a2 − a3)(a2 − a4)

P3(X) =
(X − a1)(X − a2)(X − a4)
(a3 − a1)(a3 − a2)(a3 − a4)

, P4(X) =
(X − a1)(X − a2)(X − a3)
(a4 − a1)(a4 − a2)(a4 − a3)

.

1. Montrer que la famille (P1, P2, P3, P4) est une base de R3[X], l’espace vectoriel des polynômes
à coefficients réels de degré inférieur ou égal à 3.

2. Déterminer un polynôme P vérifiant P (0) = 2, P (1) = −2, P (2) = 5 et P (−1) = 0.
Y a-t-il unicité ?

3. Déterminer la base duale (P ∗1 , P
∗
2 , P

∗
3 , P

∗
4 ).

III — Orthogonalité

Exercice 7 Donner la dimension et une base des sous-espaces suivants de R3 ainsi que de leur
orthogonal dans (R3)∗ :

1. F1 =
{

(x, y, z) ∈ R3 / y = 0
}

;

2. F2 =
{

(x, y, z) ∈ R3 / x− 3y + 2z = 0 et 2x− y + z = 0
}

;

3. F3 = Vect
(
(1, 2, 3), (4,−3, 1)

)
.

Exercice 8 Donner la dimension et une base des sous-espaces suivants de (R3)∗ ainsi que de
leur orthogonal dans R3

(
(e1, e2, e3) est une base de R3, (e∗1, e

∗
2, e
∗
3) sa base duale

)
:

1. G1 = Vect(e∗1 − e∗2 + 3e∗3) ;

2. G2 = Vect(e∗1 − e∗2 + 3e∗3, 2e
∗
1 − e∗2 + 5e∗3, 3e

∗
1 + 7e∗3) ;

3. G3 = Vect(e∗1 − e∗2 + 3e∗3, 2e
∗
1 − e∗3, e∗1 + 3e∗2 − 10e∗3).

Exercice 9 (?) Soit E un K-espace vectoriel de dimension finie et F un sous-espace vectoriel
de E. Montrer que F est une intersection finie d’hyperplans de E.

Exercice 10 Soit f ∈ E∗ une forme linéaire non nulle. Montrer l’égalité Ker(f)⊥ = Vect(f).
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Exercice 11 Soit f, f1, ..., fp ∈ E∗. Montrer l’équivalence :

p⋂
i=1

Ker(fi) ⊂ Ker(f)⇔ f ∈ Vect(f1, ...fp).

Indication : pour l’implication directe, on pourra passer à l’orthogonal.

Exercice 12 (?) Soit K un corps, (K = R ou C par exemple) n ∈ N∗ et E un K-espace vectoriel
de dimension finie (qui n’est pas n a priori). Soit (f1, ..., fn) une famille de n formes linéaires de
E∗. On considère l’application linéaire

u :

(
E → Kn

x 7→
(
f1(x), ..., fn(x)

) )
1. Montrer que u est injective si, et seulement si, (f1, ..., fn) est génératrice de E∗.

Indication : on pourra passer à l’orthogonal.

2. Montrer que u est surjective si, et seulement si, (f1, ..., fn) est libre dans E∗.

Indication : montrer que rg(f1, ..., fn) = rg(u).

IV — Transposition

Exercice 13 (?) Soit E un K-espace vectoriel de dimension finie.

1. Soit l1, l2 ∈ E∗ deux formes linéaires non nulles telles que ker l1 = ker l2. Montrer en
utilisant la question 1) de l’exercice 3 qu’il existe λ ∈ K∗ tel que l1 = λ l2 (i.e l1 et l2 sont
proportionnelles).

2. Soit u un endomorphisme de E et soit H = ker l (l ∈ E∗, l 6= 0) un hyperplan de E stable
par u (i.e. u(H) ⊂ H). Montrer qu’il existe λ ∈ K∗ tel que tu(l) = λ l (i.e un hyperplan stable
est noyau d’une forme linéaire propre de tu).

3. Application: soit u l’endomorphisme de R3 dont la matrice dans la base canonique de R3

est

A =

 1 2 −2
2 1 −2
2 2 −3

 .

a) Déterminer les valeurs propres et les vecteurs propres de tA.

b) Déterminer les plans de R3 stables par u.

Exercice 14 On suppose que E est un C-espace vectoriel. Soit u un endomorphisme de E.
Montrer qu’il existe un hyperplan de E stable par u.
Indication : considérer le polynôme caractéristique de tu.

Exercice 15 Soit u un endomorphisme de E qui laisse stable tous les hyperplans de E. Montrer
que u est une homothétie. Indication : montrer que tout vecteur de E∗ est un vecteur propre de
tu.

Exercice 16 Résoudre l’exercice 13 à l’aide du morphisme transposé tu.
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V — Bidual

Exercice 17 (?) Soit E un K-espace vectoriel de dimension finie, E∗ son dual et E∗∗ le dual
de E∗. Pour x ∈ E, on note evx l’application de E∗ dans K définie par :

pour tout l ∈ E∗, evx(l) = l(x).

1. Montrer que evx est une forme linéaire sur E∗ (ie un élément de E∗∗).

2. Montrer que l’application x 7→ evx est un isomorphisme de E sur E∗∗.

Exercice 18 Soit p un entier quelconque et x1, ..., xp des vecteurs de E tous non nuls. Montrer
qu’il existe un hyperplan de E qui ne rencontre aucun des xi.

On rappelle un résultat classique d’algèbre linéaire : soit G un K-espace vectoriel et G1, ...Gp

des sous-espaces de G. Alors

p⋃
i=1

Gi est un espace vectoriel si, et seulement si, il est égal à l’un

des Gi.
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