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Feuille d’exercices 2

Réduction des endomorphismes

I — Révisions

Exercice 1

1. Soit f l’endomorphisme de R3 dont la matrice dans la base canonique est :

A =

 1 0 2
0 −1 0
2 0 1

 .

2. Calculer le polynôme caractéristique χf de f .

3. Déterminer les valeurs propres de f et les sous-espaces propres associés.

4. L’endomorphisme f est-il diagonalisable sur R ? sur C ? Si oui, déterminer une base de
vecteurs propres et donner la matrice de f dans cette base et la matrice de passage P de la
base canonique vers cette nouvelle base.

5. Calculer Ak pour k ∈ N.

Exercice 2

Soient n ∈ N et E l’espace vectoriel des polynômes à coefficients réels de degré inférieur ou égal
à 2n. On note Φ : R[X]→ R[X] l’application définie par

Φ(P ) = X(X + 1)P ′ − 2nXP.

1. Vérifier que Φ est linéaire.

2. Vérifier que si P ∈ E, alors Φ(P ) ∈ E.

Dorénavant, Φ désignera cette application linéaire considérée de E dans E.

3. Donner la matrice de Φ dans la base (1, X, . . . ,X2n).

4. Déterminer les valeurs propres et les vecteurs propres de Φ.

5. Φ est-il diagonalisable ? Si oui, donner une base de vecteurs propres pour Φ de E.

Exercice 3

On considère la matrice M ∈ Mn(R) donnée par

M =



0 1 · · · · · · 1

1 0
. . . 1

...
. . .

. . .
. . . 1

1
. . . 0 1

1 · · · · · · 1 0


.
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1. Montrer que −1 est valeur propre de M et que dimE−1 = n− 1.

2. En déduire que le polynôme caractéristique de M est scindé sur R, puis que M est diago-
nalisable sur R.

Exercice 4

Soit f l’endomorphisme de R3 dont la matrice dans la base canonique est :

A =

 1 0 1
−1 2 1
1 −1 1

 .

1. Montrer que sp(f) = {1, 2} et déterminer les sous-espaces propres associés.

2. L’endomorphisme f est-il diagonalisable sur R ? trigonalisable sur R ?

3. Montrer que R3 = ker(f − Id)2 ⊕ ker(f − 2 Id) = F1 ⊕ E2.

4. Soit u1 ∈ E2, u3 ∈ F1 \ E1 et u2 = (f − Id)(u3). Montrer que (u1, u2, u3) est une base de
R3.

5. Donner la matrice de f dans la base (u1, u2, u3).

6. Calculer Ak pour k ∈ N.

Exercice 5 (?)

1. Soit f un endomorphisme d’un espace vectoriel E de dimension finie. On suppose que tout
vecteur non nul de E est vecteur propre de f . Que peut-on dire de f ?

2. On suppose que Tr(f) = 0. Montrer que si f est non nulle, il existe un vecteur x tel que
(x, f(x)) soit libre. En déduire l’existence d’une base dans laquelle la matrice de f est de
diagonale nulle.

II — Réduction simultanée

Exercice 6 (?)

1. Soient E un espace vectoriel de dimension finie et u et v deux endomorphismes de E qui
commutent (i.e u ◦ v = v ◦ u).

a) Montrer que chaque sous-espace propre de u est stable par v.

b) En déduire que si u et v sont diagonalisables, alors ils le sont simultanément, c’est-à-
dire qu’il existe une base de E dans laquelle les matrices de u et v sont diagonales.

2. Soit A la matrice donnée par

A =

 0 2 −1
3 −2 0
−2 2 1

 .

a) Montrer que A est diagonalisable et trouver une base de R3 formée de vecteurs propres.
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b) Déterminer le commutant de A (c’est à dire toutes les matrices qui commutent avec
A).

c) Déterminer toutes les matrices réelles (resp. complexes) B vérifiant B2 = A.

Exercice 7 (?)

Soient E un C-espace vectoriel de dimension finie et u, v, deux endomorphismes de E qui
commutent. Montrer que u et v sont simultanément trigonalisables.

Exercice 8 (?)

Soit n ∈ N∗, A,B ∈ Mn(C) telles que AB = 0. Montrer que A et B sont simultanément
trigonalisables.

III — Polynômes d’endomorphismes

Exercice 9

1. Soit f l’endomorphisme de R2 défini par f(x, y) = (2x − y,−y). On note respectivement
P1 et P2 les polynômes X3 − 5X2 + 3X − 2 et X2 −X − 2.
Déterminer les endomorphismes P1(f) et P2(f).

2. Même question avec l’endomorphisme g de C2 donné par g(x, y) = (x − iy, ix + y) et les
polynômes Q1 = X2 − iX + i+ 1 et Q2 = X(X − 2).
(Dans cette deuxième question, on regarde bien sûr C2 comme un C-espace vectoriel.)

Exercice 10 (?)

Soit E un espace vectoriel de dimension finie et f ∈ L(E) vérifiant f2 = 0.

1. Montrer que f n’est pas injectif.

2. Soit (e1, ..., ek) une base de ker f que l’on complète en une base e de E. Montrer que la
matrice [f ]e est triangulaire supérieure.

Exercice 11

1. Déterminer le polynôme minimal d’une application linéaire de R dans R.

2. Que peut-on dire d’un endomorphisme dont le polynôme minimal est de degré 1 ?

Exercice 12

Déterminer le polynôme minimal des matrices rencontrées dans les exercices 1 et 4.

Exercice 13

Déterminer toutes les matrices de M4(C) dont le polynôme minimal est égal à X(X2 + 1).

Exercice 14

Résoudre dans Mn(C) l’équation (d’inconnue M) M3 + In = 0.
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Exercice 15 (?)

Soit A ∈M2(Z). On suppose qu’il existe un entier naturel p tel que Ap = I2. Montrer : A12 = I2.

Exercice 16 (?)

On considère un R-espace vectoriel E de dimension 2 et un endomorphisme f de E distinct de
IdE et vérifiant f3 = IdE .

1. Déterminer le polynôme minimal et le polynôme caractéristique de f .

2. L’endomorphisme f est-il diagonalisable ? Trigonalisable ?

3. Si x est un vecteur non nul de E, montrer que (x, f(x)) est une base de E. Quelle est la
matrice de f dans cette base ?

Exercice 17

Soit E un espace vectoriel complexe de dimension n (n > 2) et f un endomorphisme de E
distinct de IdE , vérifiant f2 − 2f + IdE = 0.

1. Montrer que Im(f − IdE) ⊂ ker(f − IdE).

2. Démontrer que 1 est la seule valeur propre de f .

3. Calculer le déterminant de f .

4. Justifier que f n’est pas diagonalisable.

5. Déterminer le polynôme caractéristique et le polynôme minimal de f .

6. On suppose ici que n = 3. Déterminer dim ker(f − IdE). En déduire qu’il existe une base

de E dans laquelle la matrice de f est


1 0 0
0 1 1
0 0 1

.

Exercice 18

Soient n ∈ N∗ et A ∈ Mn(C) de trace non nulle. On note f : Mn(C) → Mn(C) l’application
définie par f(M) = tr(A)M − tr(M)A.

1. Montrer que f est linéaire.

2. Déterminer le noyau et l’image de f . (Indication : on pourra calculer la trace de f(M)
pour M ∈ Mn(C)).

3. Déterminer un polynôme annulateur pour f . (Indication : il en existe un de degré 2).

4. L’endomorphisme f est-il diagonalisable ?

5. Déterminer le polynôme minimal de f .

IV — Décomposition de Dunford, de Jordan

Exercice 19 Soit f l’endomorphisme de R3 dont la matrice dans la base canonique est

A =

 0 1 0
0 0 1
1 −3 3

 .
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1. Donner la décomposition de Dunford de f .

2. Quel est le polynôme minimal de f ?

3. Déterminer tous les sous-espaces vectoriels de R3 stables par f .

4. Calculer An pour tout entier naturel n.

5. Résoudre le système différentiel X ′ = AX avec pour condition initiale X(0) =


1
0
−1

.

Exercice 20

Donner la décomposition de Dunford des matrices

A =

(
1 2
0 3

)
et B =

 1 0 1
−6 −5 −7
4 4 5

 .

Exercice 21

On note B la matrice de M4(R) donnée par

B =


1 2 3 4
0 1 5 7
0 0 2 7
0 0 0 2

 .

1. B est-elle diagonalisable ?

2. Déterminer le polynôme minimal de B.

3. Donner la décomposition de Dunford de B.

Exercice 22

Déterminer la réduite de Jordan des matrices

A =


1 0 0 0
0 1 1 0
1 −1 3 1
0 0 0 2

 et B =


1 0 −1 1
0 1 1 0
0 0 1 0
0 0 1 0

 .

V — Compléments

Exercice 23

On démontre dans cet exercice le théorème de Cayley-Hamilton à l’aide de la notion de matrice
compagnon.
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1. Soit P (X) = Xn + an−1X
n−1 + ...+ a1X + a0 un polynôme unitaire. On appelle matrice

compagnon de P la matrice

C(P ) =



0 0 . . . . . . 0 a0
1 0 . . . . . . 0 a1

0 1
. . .

...
...

. . . · · ·
...

...
0 0 . . . 1 0 an−2
0 0 . . . 0 1 an−1


.

Montrer l’égalité χC(P ) = P , où χC(P ) désigne le polynôme caractéristique de C(P ).

2. Soit E un K-espace vectoriel de dimension n > 1 et f ∈ L(E). Soit x ∈ E non nul. On
veut montrer que χf (f)(x) = 0.

a) Montrer qu’il existe une base β de E dans laquelle la matrice de f est de la forme

[f ]β =

(
C(P ) ∗

0 M

)
où P est un polynôme de degré 6 n vérifiant P (f)(x) = 0. (Indication : on pourra
considérer l’entier maximal p tel que {x, f(x), ..., fp−1(x)} est libre.)

b) Conclure.

Exercice 24 (?)

Soit E un espace vectoriel de dimension n. Un endomorphisme f de E est dit cyclique s’il existe
x ∈ E tel que E = Vect(x, f(x), . . . , fn−1(x)) (ou de manière équivalente, β = (x, f(x), . . . , fn−1(x))
est un base de E).

1. Montrer que [f ]β est une matrice compagnon.

2. En utilisant le résultat de l’exercice 5) 1), montrer que tout endomorphisme d’un espace
vectoriel de dimension 2 qui n’est pas une homothétie est un endomorphisme cyclique.

3. Montrer qu’un endomorphisme de E qui a n valeurs propres distinctes est un endomor-
phisme cyclique.

4. Montrer que si f est un endomorphisme cyclique alors deg µf = n.

5. A quelle condition un endomorphisme nilpotent est-il un endomorphisme cyclique?

6. Montrer que si f est cyclique alors C(f) = {g ∈ L(E); g ◦ f = f ◦ g} = K[f ], où K[f ]
désigne l’algèbre des polynômes en f .
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