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PROBLEME DE REVISION

Le but de ce probleme est de réviser quelques notions d’algebre linéaire. Dans toute la suite, on
note K = R ou C et on se donne un K-espace vectoriel E¥ de dimension finie n > 1. On note E*
I'espace dual de E. On note Z(FE) 'espace des applications linéaires de E dans E. Pour f € Z(F)
et = (v1,...,v,) et v = (wy,...,w,) sont des bases de E, on note ,[f]z la matrice de f de la base
B vers la base v, c’est-a-dire la matrice dont les coefficients a; ; vérifient

flop) = i W) W; -
j=1

On notera simplement [f]sz = g[f]s la matrice de f dans la base . On note det(f) (resp. tr(f)) le
déterminant de f (resp. la trace de f), c’est-a-dire qu'on a

det(f) = det([f]s) et tr(f) = tr([f]s),

pour une base quelconque 5 de E (les définitions ne dépendent pas du choix de la base).

Enfin, pour tous ¢ € E* et x € E, on note ®,,: ' — E I'application définie par

O () =l(z)v, z€k.

I — Endomorphismes de rang 1

1. Dans cette question on fixe / € E* et v € E.
(i) Montrer que ®,,, € Z(E) et que ®;, = 0 si et seulement si £ =0 ou v = 0.

Solution. Soit x,y € E et a, 3 € K. On a
Oy (ax+ By) = l(ax+ fy)v = (al(z) + Fl(y))v = al(z)v+ Bly)v = aDy,(x) + B, (y).

Donc @y, est linéaire. Si £ = 0 ou v = 0, alors pour tout € E on a ®y,(x) = 0 donc
®,,, = 0. Réciproquement, si ®,, = 0, alors pour tout x € E on a {(z)v =0. Si v # 0, il
existe xg € F tel que £(zg) # 0 (sinon £ = 0). Donc ¢(x¢)v = 0 implique que v = 0.

(ii) On suppose ®,, # 0. Montrer que ®y, est de rang 1, c’est-a-dire que dim Im(®,,) = 1.

Solution. Comme ®;, # 0, on a £ # 0 et v # 0 d’apres la question précédente. Pour tout
r € E ona®,(r)=/{(x)v € Kv. Donc Im(®;,) C Kv. Comme v # 0, on a dim Kv = 1.
Par ailleurs, comme ¢ # 0, il existe xy € F tel que {(z() # 0. Donc @y, (x¢) = ((zo)v # 0
et ainsi Im(®,,) contient un vecteur non nul. Donc dim Im(®,,) > 1. On en déduit que

dim Im(®y,) = 1.

2. Soit f € Z(F) un endomorphisme de rang 1.



(i) Soit H = ker(f). Montrer qu’il existe ¢ € E* telle que H = ker (.

Solution. Comme f est de rang 1, on a dim Im(f) = 1. Par le théoreme du rang, on a
dim F = dimker(f) + dim Im(f) = dimker(f) + 1.

Donc dimker(f) = n — 1. Par conséquent, ker(f) est un hyperplan de E. Il existe donc
une forme linéaire ¢ € E* non nulle telle que ker(f) = ker(?).

(ii) Soit w € F non nul tel que Im(f) = Kw. Soit n € E* telle que n(w) = 1. Montrer que
ker f'(n) D ker !

et en déduire qu'il existe o € K tel que f7(n) = al.

Solution. Soit x € ker ¢ = ker(f). On a donc f(x) = 0. Par définition du transposé, on a

) () =n(f(x)) =n(0) = 0.

Donc = € ker f'(n). On en déduit que ker¢ C ker f'(n). Par le cours, on obtient que
£ (n) est un multiple de ¢, ce qu’on voulait démontrer.

(iii) On pose v = aw. Montrer que pour tout € E on a f(x) — ®,,(z) € kern N Kw et en
déduire que
f = (I)E,v‘

Solution. Soit x € E£. On a

Frm)(@) =n(f(2)) = al(z) = n(Peo(z)).

Donc n(f(z) — ®y,(x)) = 0, ce qui montre que f(z) — Py,(x) € kern. Par ailleurs, on a
f(z) € Im(f) = Kw et &y,(x) € Kv = Kw. Donc f(z) — ®;,,(r) € Kw. On en déduit
que f(z) — ®py(x) € kern N Kw. Comme n(w) = 1, on a kern N Kw = {0}. Donc
f(z) — @4 p(x) = 0 pour tout x € E, ce qui montre que f = Dy,

3. Soient ¢ € E* et v € E non nul. On compléte v en une base 5 = (v, e, ...,e,) de E. Montrer
l(v) Lleg) -+ Lep)
0 0O .- 0
[(I)K’”]B - : : :
0 0O .-~ 0

et en déduire que tr(®y,) = ¢(v). Montrer que cette identité reste vraie lorsque v = 0.
Solution. On a ®;,(v) = £(v)v et pour tout k =2,...,n,
Dy, (ex) = leg)v.
Donc la matrice de ®,, dans la base 3 est bien celle donnée dans I’énoncé. On obtient bien
tr(®rp) = tr([Pro]s) = £(v).

Si v = 0, alors pour tout € E on a ®y,(z) = ¢(x)0 = 0. Donc ®,,, = 0 et ainsi on obtient
tr(Py,) =0 =£(0) = {(v).



4. Soient ¢,n € E* et v,w € E. Montrer que

(I)n,w o CI)Z,'U - U(U)‘I)z,w-

Solution. Pour tout x € E, on a

0y (D0 (7)) = By (U(2)0) = () Py (v) = L) (V)W = N(V)Pr ().

. En appliquant la question précédente avec ¢ =7 et v = w, et en utilisant les questions 7777 et
??7, montrer que pour tout endomorphisme f € Z(F) de rang 1, on a

f2=t(f)f.
Solution. Soit f € Z(F) de rang 1. D’apres la question 7?7?77, il existe £ € E* et v € E tels

que f = ®y,. Par la question précédente, on a
f2 - (I)Z,v o (I)Z,v = €<U)(I)K,v-

Par la question 7?7, on a {(v) = tr(®,,) = tr(f). On en déduit que

[ =t(f)f.
. Soient 8 = (v1,...,v,) et v = (wy,...,w,) deux bases de E. On note f* = (v},...,v}) et
v = (wy,...,w}) leurs bases duales. On se donne f € Z(E) et on note A = (a; ;) = -[f]s-
() Montrer que pour tous 4,5,k = 1,...,n on a ®yr . (vx) = 6 pw; oW 6y, = 1 sii =k et

i = 0 sinon.

Solution. Soient i,j,k € {1,...,n}. On a

Dyt (vr) = v} (vg)w; = 6; gw.
(ii) En déduire que pour tout k=1,...,n, on a

n n n

Z Z a; v W Uk = Z QjWj.

i=1j=1 j=1

Solution. Soit k € {1,...,n}. On a

n n

n
ZZ(J” v w; (k) ZZ(J” ik Wj

=1 7=1 =1 7=1



(iii) En déduire que 327, 377 @i jPur w; = f-

Solution. Soit k € {1,...,n}. Par définition de la matrice de f, on a
flog) =D ajpw;.
j=1

Par la question précédente, on a aussi
n n n

;5 Put w, (V0) = > ajpw;.
=1 j= j=1

7 1

1j
On en déduit que pour tout k € {1,...,n}, on a

n

> i i jPor w; (Vk) = f (k).

i=1 j=1
Comme (vy,...,v,) est une base de E, on en déduit que
n n
2.2 i Puw, = I
i=1j=1

(iv) Montrer que la famille (‘Du;,wj) est une base de Z(F).

1<i,j<n
Solution. Soit f € Z(FE). Par la question précédente, il existe des scalaires a;; € K tels
que

n o n
f - Zzai,jq)v;,wj-

i=1j=1

Ainsi, la famille (CI)v;,wJ engendre .Z(F). Par ailleurs, on a dim Z(E) = n? et la

1<i,j<n
famille (va,*,wj)K, ~ contient n? éléments. On en déduit que cette famille est une base
¢ LISN
de Z(E).
7. Montrer que pour toute base (vi,...,v,), on a Idg = YI_; ®pep, O (0], ..., v;) est la base
duale de (vy,...,v,).
Solution. Soit x € E. On a . ;
> Pur (@) = 3 _vi(@)vi.
i=1 i=1

Par définition de la base duale, on a v} (x) = a; ou les «; sont les scalaires tels que x = > | av;.

Donc
n

n
> Pur(7) =) oivi =z
i=1

i=1

On en déduit que pour tout x € F, on a ( o1 CIDUZ_*M) (x) = x, ce qui montre que

Idp =Y @y .

i=1

8. Soient ¢ € E* et v € E, tous deux non nuls.



(i) Montrer que (®4,)? = £(v)Py, et calculer le polynome minimal de ®;,,.
Solution. Par la question 5., on a
(q)g’v)z = E(U)q)gw.

Ainsi le polynome P(X) = X? — {(v)X annule ®;,,. Sin = 1, alors ®,, est 'homothétie
de rapport £(v) donc le polynéme minimal jp, de 4, est X — €(v). Sin > 2, alors pu,
est de degré au moins 2 puisque ®;,, est de rang 1, donc n’est pas une homothétie. Ainsi,
dans ce cas, on a

eo(X) = X2 = ()X = X(X — ((v)).

(ii) On suppose £(v) # 0. Montrer que ®;,, est diagonalisable, calculer ses valeurs propres et
déterminer les sous-espaces propres associés.

Solution. Comme ((v) # 0, le polynéme minimal de @y, est p,(X) = X(X — £(v)) qui
est scindé a racines simples. Ainsi ®,, est diagonalisable. Le noyau de ®,, est ker ¢ qui
est de dimension n — 1. En outre v est un vecteur propre de ®,, associé a la valeur propre
{(v). Donc les valeurs propres de ®,, sont 0 et £(v) et les espaces propres associés sont

ker/ et Kuo.

(iii) On suppose ¢(v) = 0. Montrer que ®;, n’est pas diagonalisable et qu’il existe une base
de F telle que

010 0
0 00 0

[(I)Z 1}]6 - . . . . € Mn<K)
0 00 0

Solution. Comme ((v) = 0, le polyndme minimal de @, est p,,(X) = X? qui n’est pas
scindé a racines simples. Ainsi, ®,, n’est pas diagonalisable. On compléte v en une base
(v,€e3,...,6e,) de ker . On choisit es € E tel que f(e) = 1 (un tel vecteur existe car
¢ # 0). Alors la base 8 convient. En effet ®y,(v) = 0 et ®y,(ex) = 0 pour k > 3, et
Dy, (e2) = l(ex)v = v.

II — Opérateurs de composition

Dans cette partie on fixe f € Z(F). Par souci de simplicité on notera & = Z(FE). On définit
I'application I'y : & — & par
Lp(g)=Ffeg, geé.

9. Montrer que I'y € .Z(&) et donner dim.Z(&). Ainsi, I'y € Z(Z(E)) est un endomorphisme
de 'espace des endomorphismes de F.

Solution. Soient g,h € & et o, f € K. On a

[y(ag+Bh) = fo(ag+Bh) =a(fog)+B(foh)=als(g)+ L(h).

Donc I'¢ est linéaire. Par ailleurs, on a

dim .2 (&) = (dim &)* = (n*)* = n™.



10. Montrer que pour tous £ € E* et v € E, on a I'p(Ppy) = Py f(0)-

Solution. Soient ¢ € E* et v € E. Pour tout x € E, on a

Lp(@eo)(x) = (f 0 Peo)(x) = f(U(x)v) = €(2)f(0) = Pr s (7).

11. On se donne une base 8 = (vy,...,v,) de E et une base (¢1,...,¢,) de E*. Montrer que
7(®e, ”J Zalw o, LJ=1,...,n,

ou A = (a;;) = [f]p est la matrice de f dans la base (3.
Solution. Soient i,j € {1,...,n}. Par la question précédente, on a

Ff(q)@i,,vj) = (pfz‘7f(vj)'

Par définition de la matrice de f, on a

J Z Ay ﬂ)k
Donc, pour tout z € E, on a
Dy, p(0y)(2) = i) [ (v;)
)Y ak vk
k=1

= Z ay i li(x)vg

k=1

3

|
hE

ar,j P, v, ().

M
)

12. En déduire, en utilisant la question 77?7, que tr(I'y) = ntr(f).

Solution. Par la question 77?77, la famille ((I)gi_vj)l<‘ ~ est une base de &. Par la question
’ IL,IN

précédente, on a

27")] Z akv] ®£ yUE *

Les coefficients diagonaux de la matrice de I'y dans la base 6 = (@p 7,]) _ sont donnés par
,] n

(Ts15) 6y = a5
Il suit que la trace de I'y est

n n

Z ([Ff] )(Z,j ZZCL]J WZ(L]] ntr

1<i,5<n =1 7=1

Pour tout A € K on note E) (respectivement C)) le sous-espace propre de f (respectivement le
sous-espace caractéristique de f) associé & A. On note aussi &) (respectivement %)) le sous-espace
propre de I'¢ (respectivement le sous-espace caractéristique de I'f) associé a .

6



13.

14.

15.

16.

Montrer que pour tout P € K[X], on a P(I'f)(g) = P(f) o g pour tout g € &.

Solution. On montre le résultat par récurrence sur le degré de P. Si P est constant égale a
¢ € K, alors pour tout g € &, on a

P(T'y)(g9) = clds(g) = cg = cldgog = P(f) o g.

Supposons maintenant que le résultat est vrai pour tout polynéme de degré d et soit @) € K[X]
de degré d + 1. On peut écrire Q(X) = XP(X) + c ou P € K[X] est de degré d et ¢ € K.
Alors, pour tout g € &, on a

Q'y)(g) = (Lyo P(I'y) + clde)(g)

=T/ (P(T'y)(9) +cg

= fo (P(I'y)(9)) + ¢y

= fo(P(f)og)+cg (par hypothese de récurrence)
(foP(f)+cldg)oyg
Q(f)eog.

Montrer que pour tout g € &, on a P(I'f)(g) = 0 si et seulement si Im(g) C ker(P(f)).
Solution. Soit g € &. Par la question précédente, on a
PTy)(g) = P(f)oy.

Donc P(I'y)(g) = 0 si et seulement si pour tout z € E, on a P(f)(g(z)) = 0, c’est-a-dire si
et seulement si pour tout x € E, on a g(x) € ker(P(f)). Cela revient a dire que Im(g) C

ker(P(f)).

Soit M C E un sous-espace et Fy = {g € & | Im(g) C M}. Montrer que %), est un
sous-espace de & de dimension n dim M.

Solution. Cet espace est naturellement identifé avec ’ensemble des applications linéaires de F
dans M. Donc dim .%); = ndim M.

En déduire que pour tout A € K, on a dim &, = ndim E) et dim %) = ndim C).
Indication. Pour la deuziéme égalité, on pourra utiliser le fait que pour tous r € N et A € K,
on a ker(I'y — Aldg)" = Fyr avec M = ker(f — Mdg)".

Solution. Soit A € K. Par la question précédente, on a
& ={g €& |Im(g) C Ex} = Fp,.
Donc dim &, = ndim F). Pour la deuxieme égalité, on utilise I'indication. Soit » € N. On a
ker(I'y — Mdg)" ={g € & | Im(g) C ker(f — Mldg)"} = Fu
avec M = ker(f — Aldg)". Donc
dimker(I'y — Mldg)" = ndimker(f — Aldg)".

Sir est suffisamment grand, on a €\ = ker(I'y — Alds)" et Cy = ker(f — Aldg)”. On en déduit
que
dim %\, = ndim C.



17.

Montrer que f est diagonalisable si et seulement si I'y est diagonalisable. Montrer que dans ce
cas, on a det I'y = det(f)".

Solution. Notons que f est diagonalisable si et seulement si }°\cq,pydim By = dim £. De
méme, I'y est diagonalisable si et seulement si 3 ycqpr,) dim & = dim&. Or, on a montré que
dim &, = ndim E), donc sp(f) = sp(I') et

Z dimé&, =n Z dim Ey.

Aesp(T'y) Aesp(f)

On en déduit que f est diagonalisable si et seulement si I'; est diagonalisable. Comme I'y est
diagonalisable, on a

det(Ff) _ H )\dim@ﬁ _ H /\ndimE,\ _ ( H AdimE)) _ det(f)n
f)

Xesp(Ty) Aesp(f) Aesp(

ITIT — Formes linéaires sur Z(F)

Le but de cette partie est de déterminer I'ensemble &* = Z(E)* des formes linéaires sur 'espace
& = Z(F) des endomorphismes de E. Pour ¢ € E* et v € E, on définit 'application ¥, ,: & — K

par

18.

19.

Uoo(g) =Llg(v), ged&.

Montrer que ¥,, € &* pour tous £ € E* et v € L.

Solution. Soient g,h € & et a, f € K. On a

Vpo(ag+ph) = L((ag+Bh)(v) = (ag(v)+Bh(v)) = al(g(v))+B8L(M(v)) = a¥,(9)+BYr.,(h).

En utilisant les questions 7?7 et 7?7, montrer que pour tous ¥ € E*, v € EF et g € &, on a

Uy,(g) = tr(Ly(Pyy)) = tr(g o Opy) = tr(Pyy 0 g)

Solution. Soient ¢ € E*, v € E et g € &. Par la question 77, on a

Lg(Pew) = g0 Py = Pogn)-

Par la question 7?7, on a

tr(Ty (@) = tr(Prg0)) = £(g(v)) = Veu(9)-

Enfin tr(h o g) = tr(g o h) pour tous g, h € &, d’ou l'on tire

tr(g o ®p,) = tr(Py, 0 g).



20. Soient = (eq,...,e,) une base de E et 8* = (e},...,e) sa base duale. Montrer que la famille
<\Ile’.*,e~)1<. _ de &* est la base duale de la base (@e_* e,)l - de &.
(A <i,7<n (A

<,jsn

Solution. Soient i, j,k,l € {1,...,n}. On a

\I}e;,ej ((I)e* el) =€

k>

|
g

Ainsi Wer o (Per o)) = 181 (4,5) = (K, 1) et Wer o (Pex ¢,) = 0 sinon.

21. Déduire des deux questions précédentes que pour toute forme linéaire ¥ € &*, il existe f € &
tel que pour tout g € &, on a

U(g) =tr(fog).

Solution. Soit ¥ € &*. Par la question précédente, il existe des scalaires a; ; € K tels que

On pose alors

Alors, pour tout g € &, on a

i=1j=1
=tr Z Z aivjq)P* €j 9
i=1j=1
=tr(foyg),

ou la deuxieme égalité vient de la question 77.
22. En déduire que 'application T: & — &* donnée par
T(f)(g) =tr(foyg), fged&,
est un isomorphisme de K-espaces vectoriels.

Solution. Par la question précédente, 'application T est surjective. Mais dim & = dim &* donc
T est un isomorphisme.



