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XLG5MU010 - Algèbre et Géométrie I

Problème de révision

Le but de ce problème est de réviser quelques notions d’algèbre linéaire. Dans toute la suite, on
note K = R ou C et on se donne un K-espace vectoriel E de dimension finie n > 1. On note E?

l’espace dual de E. On note L (E) l’espace des applications linéaires de E dans E. Pour f ∈ L (E)
et β = (v1, . . . , vn) et γ = (w1, . . . , wn) sont des bases de E, on note γ[f ]β la matrice de f de la base
β vers la base γ, c’est-à-dire la matrice dont les coefficients ai,j vérifient

f(vk) =
n∑
j=1

aj,kwj.

On notera simplement [f ]β = β[f ]β la matrice de f dans la base β. On note det(f) (resp. tr(f)) le
déterminant de f (resp. la trace de f), c’est-à-dire qu’on a

det(f) = det([f ]β) et tr(f) = tr([f ]β),

pour une base quelconque β de E (les définitions ne dépendent pas du choix de la base).

Enfin, pour tous ` ∈ E? et x ∈ E, on note Φ`,v : E → E l’application définie par

Φ`,v(x) = `(x)v, x ∈ E.

I — Endomorphismes de rang 1
1. Dans cette question on fixe ` ∈ E? et v ∈ E.

(i) Montrer que Φ`,v ∈ L (E) et que Φ`,v = 0 si et seulement si ` = 0 ou v = 0.

Solution. Soit x, y ∈ E et α, β ∈ K. On a

Φ`,v(αx+βy) = `(αx+βy)v = (α`(x) +β`(y))v = α`(x)v+β`(y)v = αΦ`,v(x) +βΦ`,v(y).

Donc Φ`,v est linéaire. Si ` = 0 ou v = 0, alors pour tout x ∈ E on a Φ`,v(x) = 0 donc
Φ`,v = 0. Réciproquement, si Φ`,v = 0, alors pour tout x ∈ E on a `(x)v = 0. Si v 6= 0, il
existe x0 ∈ E tel que `(x0) 6= 0 (sinon ` = 0). Donc `(x0)v = 0 implique que v = 0.

(ii) On suppose Φ`,v 6= 0. Montrer que Φ`,v est de rang 1, c’est-à-dire que dim Im(Φ`,v) = 1.

Solution. Comme Φ`,v 6= 0, on a ` 6= 0 et v 6= 0 d’après la question précédente. Pour tout
x ∈ E, on a Φ`,v(x) = `(x)v ∈ Kv. Donc Im(Φ`,v) ⊂ Kv. Comme v 6= 0, on a dim Kv = 1.
Par ailleurs, comme ` 6= 0, il existe x0 ∈ E tel que `(x0) 6= 0. Donc Φ`,v(x0) = `(x0)v 6= 0
et ainsi Im(Φ`,v) contient un vecteur non nul. Donc dim Im(Φ`,v) > 1. On en déduit que

dim Im(Φ`,v) = 1.

2. Soit f ∈ L (E) un endomorphisme de rang 1.
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(i) Soit H = ker(f). Montrer qu’il existe ` ∈ E? telle que H = ker `.

Solution. Comme f est de rang 1, on a dim Im(f) = 1. Par le théorème du rang, on a

dimE = dim ker(f) + dim Im(f) = dim ker(f) + 1.

Donc dim ker(f) = n − 1. Par conséquent, ker(f) est un hyperplan de E. Il existe donc
une forme linéaire ` ∈ E? non nulle telle que ker(f) = ker(`).

(ii) Soit w ∈ E non nul tel que Im(f) = Kw. Soit η ∈ E? telle que η(w) = 1. Montrer que

ker f>(η) ⊃ ker `

et en déduire qu’il existe α ∈ K tel que f>(η) = α`.

Solution. Soit x ∈ ker ` = ker(f). On a donc f(x) = 0. Par définition du transposé, on a

f>(η)(x) = η(f(x)) = η(0) = 0.

Donc x ∈ ker f>(η). On en déduit que ker ` ⊂ ker f>(η). Par le cours, on obtient que
f>(η) est un multiple de `, ce qu’on voulait démontrer.

(iii) On pose v = αw. Montrer que pour tout x ∈ E on a f(x) − Φ`,v(x) ∈ ker η ∩ Kw et en
déduire que

f = Φ`,v.

Solution. Soit x ∈ E. On a

f>(η)(x) = η(f(x)) = α`(x) = η(Φ`,v(x)).

Donc η(f(x) − Φ`,v(x)) = 0, ce qui montre que f(x) − Φ`,v(x) ∈ ker η. Par ailleurs, on a
f(x) ∈ Im(f) = Kw et Φ`,v(x) ∈ Kv = Kw. Donc f(x) − Φ`,v(x) ∈ Kw. On en déduit
que f(x) − Φ`,v(x) ∈ ker η ∩ Kw. Comme η(w) = 1, on a ker η ∩ Kw = {0}. Donc
f(x)− Φ`,v(x) = 0 pour tout x ∈ E, ce qui montre que f = Φ`,v.

3. Soient ` ∈ E? et v ∈ E non nul. On complète v en une base β = (v, e2, . . . , en) de E. Montrer

[Φ`,v]β =


`(v) `(e2) · · · `(en)

0 0 · · · 0
... ... ...
0 0 · · · 0


et en déduire que tr(Φ`,v) = `(v). Montrer que cette identité reste vraie lorsque v = 0.

Solution. On a Φ`,v(v) = `(v)v et pour tout k = 2, . . . , n,

Φ`,v(ek) = `(ek)v.

Donc la matrice de Φ`,v dans la base β est bien celle donnée dans l’énoncé. On obtient bien

tr(Φ`,v) = tr([Φ`,v]β) = `(v).

Si v = 0, alors pour tout x ∈ E on a Φ`,v(x) = `(x)0 = 0. Donc Φ`,v = 0 et ainsi on obtient
tr(Φ`,v) = 0 = `(0) = `(v).
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4. Soient `, η ∈ E? et v, w ∈ E. Montrer que

Φη,w ◦ Φ`,v = η(v)Φ`,w.

Solution. Pour tout x ∈ E, on a

Φη,w(Φ`,v(x)) = Φη,w(`(x)v) = `(x)Φη,w(v) = `(x)η(v)w = η(v)Φ`,w(x).

5. En appliquant la question précédente avec ` = η et v = w, et en utilisant les questions ???? et
??, montrer que pour tout endomorphisme f ∈ L (E) de rang 1, on a

f 2 = tr(f)f.

Solution. Soit f ∈ L (E) de rang 1. D’après la question ????, il existe ` ∈ E? et v ∈ E tels
que f = Φ`,v. Par la question précédente, on a

f 2 = Φ`,v ◦ Φ`,v = `(v)Φ`,v.

Par la question ??, on a `(v) = tr(Φ`,v) = tr(f). On en déduit que

f 2 = tr(f)f.

6. Soient β = (v1, . . . , vn) et γ = (w1, . . . , wn) deux bases de E. On note β? = (v?1, . . . , v?n) et
γ? = (w?1, . . . , w?n) leurs bases duales. On se donne f ∈ L (E) et on note A = (ai,j) = γ[f ]β.

(i) Montrer que pour tous i, j, k = 1, . . . , n on a Φv?i ,wj
(vk) = δi,kwj où δi,k = 1 si i = k et

δi,k = 0 sinon.

Solution. Soient i, j, k ∈ {1, . . . , n}. On a

Φv?i ,wj
(vk) = v?i (vk)wj = δi,kwj.

(ii) En déduire que pour tout k = 1, . . . , n, on a
n∑
i=1

n∑
j=1

ai,jΦv?i ,wj
(vk) =

n∑
j=1

aj,kwj.

Solution. Soit k ∈ {1, . . . , n}. On a

n∑
i=1

n∑
j=1

ai,jΦv?i ,wj
(vk) =

n∑
i=1

n∑
j=1

ai,jδi,kwj

=
n∑

j=1=1
ak,jwj

=
n∑
j=1

aj,kwj.
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(iii) En déduire que ∑n
i=1

∑n
j=1 ai,jΦv?i ,wj

= f.

Solution. Soit k ∈ {1, . . . , n}. Par définition de la matrice de f , on a

f(vk) =
n∑
j=1

aj,kwj.

Par la question précédente, on a aussi
n∑
i=1

n∑
j=1

ai,jΦv?i ,wj
(vk) =

n∑
j=1

aj,kwj.

On en déduit que pour tout k ∈ {1, . . . , n}, on a
n∑
i=1

n∑
j=1

ai,jΦv?i ,wj
(vk) = f(vk).

Comme (v1, . . . , vn) est une base de E, on en déduit que
n∑
i=1

n∑
j=1

ai,jΦv?i ,wj
= f.

(iv) Montrer que la famille
(
Φv?i ,wj

)
16i,j6n

est une base de L (E).

Solution. Soit f ∈ L (E). Par la question précédente, il existe des scalaires ai,j ∈ K tels
que

f =
n∑
i=1

n∑
j=1

ai,jΦv?i ,wj
.

Ainsi, la famille
(
Φv?i ,wj

)
16i,j6n

engendre L (E). Par ailleurs, on a dim L (E) = n2 et la

famille
(
Φv?i ,wj

)
16i,j6n

contient n2 éléments. On en déduit que cette famille est une base
de L (E).

7. Montrer que pour toute base (v1, . . . , vn), on a IdE = ∑n
i=1 Φv?i ,vi

où (v?1, . . . , v?n) est la base
duale de (v1, . . . , vn).

Solution. Soit x ∈ E. On a
n∑
i=1

Φv?i ,vi
(x) =

n∑
i=1

v?i (x)vi.

Par définition de la base duale, on a v?i (x) = αi où les αi sont les scalaires tels que x = ∑n
i=1 αivi.

Donc
n∑
i=1

Φv?i ,vi
(x) =

n∑
i=1

αivi = x.

On en déduit que pour tout x ∈ E, on a
(∑n

i=1 Φv?i ,vi

)
(x) = x, ce qui montre que

IdE =
n∑
i=1

Φv?i ,vi
.

8. Soient ` ∈ E? et v ∈ E, tous deux non nuls.
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(i) Montrer que (Φ`,v)2 = `(v)Φ`,v et calculer le polynôme minimal de Φ`,v.

Solution. Par la question 5., on a

(Φ`,v)2 = `(v)Φ`,v.

Ainsi le polynôme P (X) = X2 − `(v)X annule Φ`,v. Si n = 1, alors Φ`,v est l’homothétie
de rapport `(v) donc le polynôme minimal µ`,v de Φ`,v est X − `(v). Si n > 2, alors µ`,v
est de degré au moins 2 puisque Φ`,v est de rang 1, donc n’est pas une homothétie. Ainsi,
dans ce cas, on a

µ`,v(X) = X2 − `(v)X = X(X − `(v)).

(ii) On suppose `(v) 6= 0. Montrer que Φ`,v est diagonalisable, calculer ses valeurs propres et
déterminer les sous-espaces propres associés.

Solution. Comme `(v) 6= 0, le polynôme minimal de Φ`,v est µ`,v(X) = X(X − `(v)) qui
est scindé à racines simples. Ainsi Φ`,v est diagonalisable. Le noyau de Φ`,v est ker ` qui
est de dimension n−1. En outre v est un vecteur propre de Φ`,v associé à la valeur propre
`(v). Donc les valeurs propres de Φ`,v sont 0 et `(v) et les espaces propres associés sont

ker ` et Kv.

(iii) On suppose `(v) = 0. Montrer que Φ`,v n’est pas diagonalisable et qu’il existe une base β
de E telle que

[Φ`,v]β =


0 1 0 · · · 0
0 0 0 · · · 0
... ... ... ...
0 0 0 · · · 0

 ∈Mn(K).

Solution. Comme `(v) = 0, le polynôme minimal de Φ`,v est µ`,v(X) = X2 qui n’est pas
scindé à racines simples. Ainsi, Φ`,v n’est pas diagonalisable. On complète v en une base
(v, e3, . . . , en) de ker `. On choisit e2 ∈ E tel que `(e2) = 1 (un tel vecteur existe car
` 6= 0). Alors la base β convient. En effet Φ`,v(v) = 0 et Φ`,v(ek) = 0 pour k > 3, et
Φ`,v(e2) = `(e2)v = v.

II — Opérateurs de composition
Dans cette partie on fixe f ∈ L (E). Par souci de simplicité on notera E = L (E). On définit
l’application Γf : E → E par

Γf (g) = f ◦ g, g ∈ E .

9. Montrer que Γf ∈ L (E ) et donner dim L (E ). Ainsi, Γf ∈ L (L (E)) est un endomorphisme
de l’espace des endomorphismes de E.

Solution. Soient g, h ∈ E et α, β ∈ K. On a

Γf (αg + βh) = f ◦ (αg + βh) = α(f ◦ g) + β(f ◦ h) = αΓf (g) + βΓf (h).

Donc Γf est linéaire. Par ailleurs, on a

dim L (E ) = (dim E )2 = (n2)2 = n4.
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10. Montrer que pour tous ` ∈ E? et v ∈ E, on a Γf (Φ`,v) = Φ`,f(v).

Solution. Soient ` ∈ E? et v ∈ E. Pour tout x ∈ E, on a

Γf (Φ`,v)(x) = (f ◦ Φ`,v)(x) = f(`(x)v) = `(x)f(v) = Φ`,f(v)(x).

11. On se donne une base β = (v1, . . . , vn) de E et une base (`1, . . . , `n) de E?. Montrer que

Γf (Φ`i,vj) =
n∑
k=1

ak,jΦ`i,vk , i, j = 1, . . . , n,

où A = (ai,j) = [f ]β est la matrice de f dans la base β.

Solution. Soient i, j ∈ {1, . . . , n}. Par la question précédente, on a

Γf (Φ`i,vj) = Φ`i,f(vj).

Par définition de la matrice de f , on a

f(vj) =
n∑
k=1

ak,jvk.

Donc, pour tout x ∈ E, on a

Φ`i,f(vj)(x) = `i(x)f(vj)

= `i(x)
n∑
k=1

ak,jvk

=
n∑
k=1

ak,j`i(x)vk

=
n∑
k=1

ak,jΦ`i,vk(x).

12. En déduire, en utilisant la question ????, que tr(Γf ) = n tr(f).

Solution. Par la question ????, la famille
(
Φ`i,vj

)
16i,j6n

est une base de E . Par la question
précédente, on a

Γf (Φ`i,vj) =
n∑
k=1

ak,jΦ`i,vk .

Les coefficients diagonaux de la matrice de Γf dans la base β̃ =
(
Φ`i,vj

)
16i,j6n

sont donnés par

([Γf ]β̃)(i,j),(i,j) = aj,j.

Il suit que la trace de Γf est

∑
16i,j6n

([Γf ]β̃)(i,j),(i,j) =
n∑
i=1

n∑
j=1

aj,j = n
n∑
j=1

aj,j = n tr(f).

Pour tout λ ∈ K on note Eλ (respectivement Cλ) le sous-espace propre de f (respectivement le
sous-espace caractéristique de f) associé à λ. On note aussi Eλ (respectivement Cλ) le sous-espace
propre de Γf (respectivement le sous-espace caractéristique de Γf ) associé à λ.
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13. Montrer que pour tout P ∈ K[X], on a P (Γf )(g) = P (f) ◦ g pour tout g ∈ E .

Solution. On montre le résultat par récurrence sur le degré de P . Si P est constant égale à
c ∈ K, alors pour tout g ∈ E , on a

P (Γf )(g) = c IdE (g) = cg = c IdE ◦g = P (f) ◦ g.

Supposons maintenant que le résultat est vrai pour tout polynôme de degré d et soit Q ∈ K[X]
de degré d + 1. On peut écrire Q(X) = XP (X) + c où P ∈ K[X] est de degré d et c ∈ K.
Alors, pour tout g ∈ E , on a

Q(Γf )(g) = (Γf ◦ P (Γf ) + c IdE )(g)
= Γf (P (Γf )(g)) + cg

= f ◦ (P (Γf )(g)) + cg

= f ◦ (P (f) ◦ g) + cg (par hypothèse de récurrence)
= (f ◦ P (f) + c IdE) ◦ g
= Q(f) ◦ g.

14. Montrer que pour tout g ∈ E , on a P (Γf )(g) = 0 si et seulement si Im(g) ⊂ ker(P (f)).

Solution. Soit g ∈ E . Par la question précédente, on a

P (Γf )(g) = P (f) ◦ g.

Donc P (Γf )(g) = 0 si et seulement si pour tout x ∈ E, on a P (f)(g(x)) = 0, c’est-à-dire si
et seulement si pour tout x ∈ E, on a g(x) ∈ ker(P (f)). Cela revient à dire que Im(g) ⊂
ker(P (f)).

15. Soit M ⊂ E un sous-espace et FM = {g ∈ E | Im(g) ⊂ M}. Montrer que FM est un
sous-espace de E de dimension n dimM .

Solution. Cet espace est naturellement identifé avec l’ensemble des applications linéaires de E
dans M . Donc dim FM = n dimM .

16. En déduire que pour tout λ ∈ K, on a dim Eλ = n dimEλ et dim Cλ = n dimCλ.
Indication. Pour la deuxième égalité, on pourra utiliser le fait que pour tous r ∈ N et λ ∈ K,
on a ker(Γf − λIdE )r = FM avec M = ker(f − λIdE)r.

Solution. Soit λ ∈ K. Par la question précédente, on a

Eλ = {g ∈ E | Im(g) ⊂ Eλ} = FEλ .

Donc dim Eλ = n dimEλ. Pour la deuxième égalité, on utilise l’indication. Soit r ∈ N. On a

ker(Γf − λIdE )r = {g ∈ E | Im(g) ⊂ ker(f − λIdE)r} = FM

avec M = ker(f − λIdE)r. Donc

dim ker(Γf − λIdE )r = n dim ker(f − λIdE)r.

Si r est suffisamment grand, on a Cλ = ker(Γf − λIdE )r et Cλ = ker(f − λIdE)r. On en déduit
que

dim Cλ = n dimCλ.
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17. Montrer que f est diagonalisable si et seulement si Γf est diagonalisable. Montrer que dans ce
cas, on a det Γf = det(f)n.

Solution. Notons que f est diagonalisable si et seulement si ∑λ∈sp(f) dimEλ = dimE. De
même, Γf est diagonalisable si et seulement si ∑λ∈sp(Γf ) dim Eλ = dim E . Or, on a montré que
dim Eλ = n dimEλ, donc sp(f) = sp(Γ) et∑

λ∈sp(Γf )
dim Eλ = n

∑
λ∈sp(f)

dimEλ.

On en déduit que f est diagonalisable si et seulement si Γf est diagonalisable. Comme Γf est
diagonalisable, on a

det(Γf ) =
∏

λ∈sp(Γf )
λdim Eλ =

∏
λ∈sp(f)

λn dimEλ =
 ∏
λ∈sp(f)

λdimEλ

n = det(f)n.

III — Formes linéaires sur L (E)
Le but de cette partie est de déterminer l’ensemble E ? = L (E)? des formes linéaires sur l’espace
E = L (E) des endomorphismes de E. Pour ` ∈ E? et v ∈ E, on définit l’application Ψ`,v : E → K
par

Ψ`,v(g) = `(g(v)), g ∈ E .

18. Montrer que Ψ`,v ∈ E ? pour tous ` ∈ E? et v ∈ E.

Solution. Soient g, h ∈ E et α, β ∈ K. On a

Ψ`,v(αg+βh) = `((αg+βh)(v)) = `(αg(v)+βh(v)) = α`(g(v))+β`(h(v)) = αΨ`,v(g)+βΨ`,v(h).

19. En utilisant les questions ?? et ??, montrer que pour tous ` ∈ E?, v ∈ E et g ∈ E , on a

Ψ`,v(g) = tr(Γg(Φ`,v)) = tr(g ◦ Φ`,v) = tr(Φ`,v ◦ g)

Solution. Soient ` ∈ E?, v ∈ E et g ∈ E . Par la question ??, on a

Γg(Φ`,v) = g ◦ Φ`,v = Φ`,g(v).

Par la question ??, on a

tr(Γg(Φ`,v)) = tr(Φ`,g(v)) = `(g(v)) = Ψ`,v(g).

Enfin tr(h ◦ g) = tr(g ◦ h) pour tous g, h ∈ E , d’où l’on tire

tr(g ◦ Φ`,v) = tr(Φ`,v ◦ g).
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20. Soient β = (e1, . . . , en) une base de E et β? = (e?1, . . . , e?n) sa base duale. Montrer que la famille(
Ψe?i ,ej

)
16i,j6n

de E ? est la base duale de la base
(
Φe?i ,ej

)
16i,j6n

de E .

Solution. Soient i, j, k, l ∈ {1, . . . , n}. On a

Ψe?i ,ej
(Φe?

k
,el) = e?i (Φe?

k
,el(ej))

= e?i (e?k(ej)el)
= e?k(ej)e?i (el)
= δj,kδi,l.

Ainsi Ψe?i ,ej
(Φe?

k
,el) = 1 si (i, j) = (k, l) et Ψe?i ,ej

(Φe?
k
,el) = 0 sinon.

21. Déduire des deux questions précédentes que pour toute forme linéaire Ψ ∈ E ?, il existe f ∈ E
tel que pour tout g ∈ E , on a

Ψ(g) = tr(f ◦ g).

Solution. Soit Ψ ∈ E ?. Par la question précédente, il existe des scalaires ai,j ∈ K tels que

Ψ =
n∑
i=1

n∑
j=1

ai,jΨe?i ,ej
.

On pose alors
f =

n∑
i=1

n∑
j=1

ai,jΦe?i ,ej
∈ E .

Alors, pour tout g ∈ E , on a

Ψ(g) =
n∑
i=1

n∑
j=1

ai,jΨe?i ,ej
(g)

=
n∑
i=1

n∑
j=1

ai,j tr(Φe?i ,ej
◦ g)

= tr
 n∑

i=1

n∑
j=1

ai,jΦe?i ,ej

 ◦ g


= tr(f ◦ g),

où la deuxième égalité vient de la question ??.

22. En déduire que l’application Υ: E → E ? donnée par

Υ(f)(g) = tr(f ◦ g), f, g ∈ E ,

est un isomorphisme de K-espaces vectoriels.

Solution. Par la question précédente, l’application Υ est surjective. Mais dim E = dim E ? donc
Υ est un isomorphisme.

? ? ?
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