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La qualité de la rédaction est un facteur important dans l’appréciation des copies. Vous
êtes donc invités à produire des raisonnements clairs, complets et concis. Vous pouvez à
chaque instant utiliser un résultat énoncé dans une question ou une partie précédente, en
veillant cependant à bien en indiquer la référence.

1. (Questions de cours) Soit E un K-espace vectoriel de dimension finie et f ∈ L (E).

(a) [1]Donner un des critères de trigonalisabilité de f .

Solution: L’endomorphisme f est trigonalisable si, et seulement si, son po-
lynôme caractéristique est scindé sur K.

(b) [1]Définir l’espace caractéristique associé à une valeur propre de f .

Solution: Pour une valeur propre λ ∈ K, l’espace caractéristique associé à
λ est le sous-espace vectoriel Cλ ⊂ E défini par

Cλ = Ker
(
(f − λ IdE)

malg
f (λ)).

où malg
f (λ) est la multiplicité algébrique de λ.

(c) [1]Définir une application linéaire naturelle φ : E → E∗∗. Que peut-on dire de φ ?

Solution: Pour x ∈ E, on définit l’évaluation en x, notée evx : E∗ → K,
par ℓ 7→ ℓ(x). On définit alors l’application φ par

φ : E → E∗∗, x 7→ evx.

L’application φ : E → E∗∗ est linéaire et, lorsque E est de dimension finie,
c’est un isomorphisme.

2. Soit f : R3 → R3 l’endomorphisme dont la matrice dans la base canonique est

A =

2 0 1

0 1 0

1 0 2

 .

(a) [1/2]Calculer le polynôme caractéristique χf de f .



Solution: Le polynôme caractéristique est donné par

χf (X) = det(XI3 − A) = det

X − 2 0 −1

0 X − 1 0

−1 0 X − 2

 .

En développant selon la deuxième ligne, on obtient

χf (X) = (X − 1) det

(
X − 2 −1

−1 X − 2

)
= (X − 1)2(X − 3).

Remarque : Parfois, det(A − XI3) était calculé et accepté comme réponse.
Cela conduit au même résultat sur les racines avec un signe global différent.

(b) [1]Déterminer les valeurs propres de f et les sous-espaces propres associés.

Solution: Les valeurs propres sont les racines du polynôme caractéristique,
à savoir 1 et 3. Pour λ = 1, on trouve

A− I3 =

1 0 1

0 0 0

1 0 1

 .

E1 = Ker(A− I3) =
{
(x, y, z) ∈ R3 | x+ z = 0

}
= Vect{(−1, 0, 1), (0, 1, 0)}

Pour λ = 3, on trouve

A− 3I3 =

−1 0 1

0 −2 0

1 0 −1

 .

E3 = Ker(A− 3I3) =
{
(x, y, z) ∈ R3 | x = z, y = 0

}
= Vect{(1, 0, 1)}.

(c) [1]Est-ce f est diagonalisable ? Si oui, déterminer une base de vecteurs propres et
donner la matrice de f dans cette base et la matrice de passage P de la base
canonique vers cette nouvelle base.

Solution: D’après la question précédente, les valeurs propres sont 1 et 3 avec
des sous-espaces propres de dimensions respectives 2 et 1. Ainsi, le polynôme
caractéristique est scindé et les multiplicités géométriques coïncident avec les
multiplicités algébriques. D’après un critère de diagonalisabilité du cours, f
est donc diagonalisable.

Toujours d’après le cours, une base de vecteurs propres est donnée par la
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réunion des bases des sous-espaces propres associés aux valeurs propres. Ainsi
{(−1, 0, 1), (0, 1, 0), (1, 0, 1)} est une base de vecteurs propres.

La matrice de f dans cette base est diagonale avec les valeurs propres sur la
diagonale :

D =

1 0 0

0 1 0

0 0 3

 .

La matrice de passage P de la base canonique vers cette nouvelle base est
formée par les vecteurs propres en colonnes :

P =

−1 0 1

0 1 0

1 0 1

 .

Ainsi D = P−1AP .

(d) [1/2]Quel est le polynôme minimal de f ?

Solution: D’après un critère de diagonalisabilité du cours (critère III), f est
diagonalisable si, et seulement si, son polynôme minimal est scindé à racines
simples. D’après la question précédente, le polynôme minimal est donc

µf (X) = (X − 1)(X − 3).

Remarque : On attendait ici simplement l’utilisation du critère, se basant
sur la diagonalisabilité de f montrée à la question précédente. Parfois il était
directement montré que muf annule f , ce qui était bien entendu tout aussi
correct.

(e) [2]Déterminer toutes les matrices qui commutent avec A.

Solution: On cherche toutes les matrices X qui commutent avec A, c’est-à-
dire telles que AX = XA. On va chercher les matrices Y qui commutent avec
D. En effet, X commute avec A, si, et seulement si, Y = P−1XP commute
avec D :

AX = XA ⇐⇒ PDP−1X = XPDP−1

⇐⇒ P−1PDP−1XP = P−1XPD

⇐⇒ D(P−1XP ) = (P−1XP )D

⇐⇒ DY = Y D
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On écrit donc :1 0 0

0 1 0

0 0 3


a b c

d e f

g h i

 =

a b c

d e f

g h i


1 0 0

0 1 0

0 0 3


On en déduit, par un calcul simple, que cela impose que Y est de la formea b 0

d e 0

0 0 i

 , (a, b, d, e, i ∈ R).

Ainsi, les matrices qui commutent avec A sont les X telles que X = PY P−1.
On obtient, par calcul matriciel,

X =


a+i
2

−b −a+i
2

−1
2
d e 1

2
d

−a+i
2

b a+i
2

 , (a, b, d, e, i) ∈ R.

puis quitte à renommer les paramètres, les matrices qui commutent avec A

sont celles de la formea b i

d e −d

i −b a

 , (a, b, d, e, i) ∈ R.

Remarque : On attendait ici la détermination de Y puis de X = PY P−1.
On pouvait aussi raisonner directement sur A mais cela demandait un peu
plus de calculs.

3. [2]Déterminer toutes les matrices de M4(C) dont le polynôme minimal est

µA(X) = X2 − 1.

Solution: Le polynôme minimal µA(X) = X2 − 1 = (X − 1)(X + 1) est scindé
à racines simples. D’après un critère de diagonalisabilité du cours, A est donc
diagonalisable.

Ainsi, il existe une base de C4 dans laquelle la matrice de A est diagonale avec
uniquement les valeurs propres 1 et −1.

Soit k le nombre de fois que 1 apparaît sur la diagonale. Alors −1 apparaît 4− k

fois. Le polynôme minimal étant (X−1)(X+1), les deux valeurs propres doivent
apparaître au moins une fois. Donc k peut prendre les valeurs 1, 2, 3.
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Par conséquent, les matrices de M4(C) dont le polynôme minimal est X2−1 sont
celles qui sont semblables aux matrices diagonales suivantes :

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 ,


1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

 ,


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 .

4. Soit f l’endomorphisme de C3 dont la matrice dans la base canonique est

A =

4 1 0

0 4 0

2 0 1

 .

(a) [1]Déterminer les valeurs propres de f , ainsi que leurs multiplicités algébriques et
géométriques.

Solution: Le polynôme caractéristique de f est

χf (X) = det(XI3 − A) = det

X − 4 −1 0

0 X − 4 0

−2 0 X − 1

 .

En développant selon la deuxième ligne, on obtient

χf (X) = (X − 4) det

(
X − 4 0

−2 X − 1

)
= (X − 4)2(X − 1).

Ainsi, les valeurs propres de f sont 4 et 1 avec des multiplicités algébriques
respectives 2 et 1. Pour la valeur propre 4, on trouve

A− 4I3 =

0 1 0

0 0 0

2 0 −3

 .

Le sous-espace propre associé est donc

E4 = Ker(A−4I3) =
{
(x, y, z) ∈ C3 | y = 0, 2x− 3z = 0

}
= Vect {(3, 0, 2)} .

La multiplicité géométrique de la valeur propre 4 est donc 1. Pour la valeur
propre 1, on trouve

A− I3 =

3 1 0

0 3 0

2 0 0

 .
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Le sous-espace propre associé est donc

E1 = Ker(A− I3) =
{
(x, y, z) ∈ C3 | 3x+ y = 0, 2x = 0

}
= Vect{(0, 0, 1)}.

La multiplicité géométrique de la valeur propre 1 est donc 1.

(b) [1]Construire une base de C3 dans laquelle la matrice de f est

J =

4 1 0

0 4 0

0 0 1

 .

Solution: Puisque la valeur propre 4 a une multiplicité algébrique de 2 et
une multiplicité géométrique de 1, pour construire une base adaptée, nous
partons du vecteur propre associé à la valeur propre 4,

v1 = (3, 0, 2),

puis nous cherchons un vecteur v2 tel que (A− 4I3)v2 = v1 :0 1 0

0 0 0

2 0 −3


x

y

z

 =

3

0

2

 .

En résolvant ce système, on trouve y = 3 et 2x − 3z = 2. En choisissant
z = 0, on obtient x = 1. Ainsi, un choix possible pour v2 est

v2 = (1, 3, 0).

Pour la valeur propre 1, nous avons déjà le vecteur propre :

v3 = (0, 0, 1).

Si P est la matrice dont les colonnes sont v1, v2, v3, alors P−1AP = J . Ainsi,
une base de C3 dans laquelle la matrice de f est J est donnée par

{v1, v2, v3} = {(3, 0, 2), (1, 3, 0), (0, 0, 1)}.

(c) [1]Monter que la décomposition de Dunford de J est

J =

4 0 0

0 4 0

0 0 1

+

0 1 0

0 0 0

0 0 0

 .
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Solution: La décomposition de Dunford d’une matrice (trigonalisable) M

est l’unique écriture de M sous la forme

M = Ms +Mn,

où Ms est diagonalisable, Mn est nilpotente, et MsMn = MnMs. Pour la
matrice J , si

Js =

4 0 0

0 4 0

0 0 1

 , Jn =

0 1 0

0 0 0

0 0 0

 .

alors Js est diagonale (donc en particulier diagonalisable), la matrice Jn est
nilpotente d’ordre 2, puisque

J2
n =

0 1 0

0 0 0

0 0 0


0 1 0

0 0 0

0 0 0

 =

0 0 0

0 0 0

0 0 0

 .

et de plus, l’on a JsJn = JnJs :4 0 0

0 4 0

0 0 1


0 1 0

0 0 0

0 0 0

 =

0 4 0

0 0 0

0 0 0

 =

0 1 0

0 0 0

0 0 0


4 0 0

0 4 0

0 0 1


Ainsi, J = Js + Jn est bien la décomposition de Dunford de J .

Remarque : On attendait ici la vérification explicite des propriétés de la
décomposition de Dunford et en particulier la commutation entre Js et Jn.

(d) [1]En déduire celle de A.

Solution: Pour obtenir la décomposition de Dunford de A, nous utilisons la
matrice de passage P de la base canonique à la base dans laquelle A est sous
forme de Jordan J . La décomposition de Dunford de A est alors donnée par

A = As + An,

où As := PJsP
−1 et An := PJnP

−1. En effet, As est diagonalisable puisque
semblable à une matrice diagonale, et An est nilpotente d’ordre 2 puisque
A2

n = PJnP
−1PJnP

−1 = 0. De plus, on a

AsAn = PJsP
−1PJnP

−1 = PJsJnP
−1 = PJnJsP

−1 = PJnP
−1PJsP

−1 = AnAs

Les propriétés de la décomposition de Dunford sont vérifiées. Par un calcul
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matriciel, on trouve

A = PJsP
−1 + PJnP

−1 =

4 0 0

0 4 0

2 −2
3

1

+


0 1 0

0 0 0

0 2
3

0

 =

4 1 0

0 4 0

2 0 1

 .

Remarque : On attendait ici la vérification des propriétés ci-dessus de la
décomposition de Dunford et en particulier la commutation entre As et An,
puis le calcul de A. Parfois, la décomposition “rapide” suivante était donnée :

A =

4 0 0

0 4 0

2 0 1

+


0 1 0

0 0 0

0 0 0


La première matrice est bien diagonalisable (on pourra vérifier que l’espace
propre pour la valeur propre 4 est de dimension 2), et la seconde matrice est
bien nilpotente, mais les deux matrices ne commutent pas.

(e) [2]Calculer Ak pour tout k ≥ 0.

Solution: Pour toute puissance k ∈ N on a

Ak = (PJP−1)
k
= PJkP−1,

car les P et P−1 se simplifient en chaîne. Il est plus facile de calculer Jk. On
reprend la décomposition de Dunford de J :

J = Js + Jn.

Nous avons JsJn = JnJs, donc par la formule du binôme de Newton,

Jk = (Js + Jn)
k =

k∑
i=0

(
k

i

)
Jk−i
s J i

n.

Or, Jn est nilpotente d’ordre 2, donc J2
n = 0. Ainsi, la formule précédente se

simplifie en
Jk = Jk

s + kJk−1
s Jn.

Calculons Jk
s et Jk−1

s Jn :

Jk
s =

4k 0 0

0 4k 0

0 0 1

 , Jk−1
s Jn =

0 4k−1 0

0 0 0

0 0 0

 .

Donc,

Jk =

4k k4k−1 0

0 4k 0

0 0 1

 .
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Finalement,

Ak = PJkP−1 = P

4k k4k−1 0

0 4k 0

0 0 1

P−1.

On obtient, par calcul matriciel simple la formule finale :

Ak =

 4k k4k−1 0

0 4k 0
2
3
(4k − 1) 2

9
((3k − 4)4k−1 + 1) 1

 .

Remarque : On attendait ici la justification de l’utilisation de la formule
de Newton, i.e. que Js et Jn commutent. Puis, on attendait au moins le
calcul explicit de Jk. Si l’on raisonnait directement sur A, on attendait de
même la justification de l’utilisation de la formule de Newton, puis la formule
Ak = Ak

s + kAk−1
s An, mais Ak devait être donné explicitement dans ce cas.

5. Soit E un espace vectoriel complexe de dimension finie soient u, v ∈ L (E). On
suppose que u ◦ v = v ◦ u.

(a) [1/2]Monter que uk ◦ v = v ◦ uk pour tout entier k ≥ 0.

Solution: La propriété est évidente pour k = 0 car u0 = IdE et donc
IdE ◦v = v ◦ IdE. Supposons maintenant que la propriété est vraie pour
un certain entier k ≥ 0, c’est-à-dire que uk ◦ v = v ◦ uk et montrons qu’elle
est vraie pour k + 1. En utilisant l’hypothèse de récurrence et le fait que
u ◦ v = v ◦ u, nous avons

uk+1 ◦ v = uk ◦ (v ◦ u) = (uk ◦ v) ◦ u = (v ◦ uk) ◦ u = v ◦ (uk ◦ u) = v ◦ uk+1.

Ainsi, par récurrence, la propriété est vraie pour tout entier k ≥ 0.

(b) [1/2]En déduire que pour tout polynôme P ∈ C[X], on a P (u) ◦ v = v ◦ P (u).

Solution: Soit P (X) =
∑n

i=0 aiX
i un polynôme de degré n avec ai ∈ C.

Nous avons

P (u) ◦ v =

(
n∑

i=0

aiu
i

)
◦ v =

n∑
i=0

ai(u
i ◦ v).

En utilisant le résultat de la partie précédente, nous savons que ui◦v = v◦ui

pour tout entier i ≥ 0. Ainsi,

P (u) ◦ v =
n∑

i=0

ai(v ◦ ui) = v ◦

(
n∑

i=0

aiu
i

)
= v ◦ P (u).

Page 9



Par conséquent, pour tout polynôme P , nous avons P (u) ◦ v = v ◦ P (u).

(c) [1]Montrer que u est trigonalisable. En déduire que E est somme directe des sous-
espaces caractéristiques de u.

Solution: Puisque E est un espace vectoriel complexe de dimension finie, le
polynôme caractéristique de u est scindé. Par un critère de trigonalisabilité
du cours, u est trigonalisable. De plus, d’après un résultat du cours (2.3.5),
E se décompose en somme directe des sous-espaces caractéristiques :

E =
⊕

λ∈sp(u)

Cλ,

où sp(u) est l’ensemble des valeurs propres de u et Cλ est le sous-espace
caractéristique associé à la valeur propre λ.

(d) [2]Montrer que chaque sous-espace caractéristique de u est stable par v.

Solution: Soit λ une valeur propre de u et Cλ le sous-espace caractéristique
associé. Par définition, Cλ = Ker((u− λ IdE)

m) où m est la multiplicité
algébrique de λ. Soit x ∈ Cλ et montrons que v(x) ∈ Cλ, c’est-à-dire que
(u− λ IdE)

mv(x) = 0. En utilisant le fait que u et v commutent, nous avons,
grâce à la partie (b),

(u− λ IdE)
mv(x) = v(u− λ IdE)

mx = v(0) = 0.

Ainsi, v(x) ∈ Cλ, ce qui montre que Cλ est stable par v.

Remarque : Les exercices (a) et (b) étaient décomposés en deux courts exercices pour
donner une indication comment démontrer P (u) ◦ v = v ◦ P (u) rigoureusement.
La question (c) était une application directe du cours, et faisait référence, pour la
trigonalisabilité de u, à la question de cours 1(a). Pour la stabilité des sous-espaces
caractéristiques par v, seul exercice un peu théorique du sujet, il suffisait d’utiliser
la partie (b) et la définition des sous-espaces caractéristiques qui était le sujet de la
question de cours 1(b).

Question: 1 2 3 4 5 Total

Points: 3 5 2 6 4 20

Score:
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