UNIVERSITE DE NANTES ANNEE 2025-2026
DEPARTEMENT DE MATHEMATIQUES LICENCE 3—-XLG5H5MUO010

Algébre et Géométrie I — CC du 3 décembre 2026

Durée 2h. Le sujet est recto-verso

Documents, calculatrices, téléphones portables ou autres appareils électroniques interdits.

La qualité de la rédaction est un facteur important dans l’appréciation des copies. Vous

étes donc invités a produire des raisonnements clairs, complets et concis. Vous pouvez a

chaque instant utiliser un résultat énoncé dans une question ou une partie précédente, en

veillant cependant a bien en indiquer la référence.

1. (Questions de cours) Soit £ un K-espace vectoriel de dimension finie et f € Z(E).

(a)

(c)

Donner un des critéres de trigonalisabilité de f.

Solution: L’endomorphisme f est trigonalisable si, et seulement si, son po-

lynéme caractéristique est scindé sur K.

Définir I'espace caractéristique associé a une valeur propre de f.

Solution: Pour une valeur propre A € K, ’espace caractéristique associé a

A est le sous-espace vectoriel C'y C E défini par

Cy = Ker ((f — Aldg)™ "),

ol m‘;lg (A) est la multiplicité algébrique de A.

Définir une application linéaire naturelle ¢ : E — E**. Que peut-on dire de ¢ ?

Solution: Pour x € E, on définit [’évaluation en x, notée ev, : B* — K,

par ¢ — £(x). On définit alors 'application ¢ par
p: E— EY 1w ev,.

L’application ¢ : E — E** est linéaire et, lorsque E est de dimension finie,

c’est un isomorphisme.

2. Soit f : R?* — R3 ’endomorphisme dont la matrice dans la base canonique est

A=

—_— O N
S = O

1
0
2

(a) Calculer le polynome caractéristique xy de f.

1]

1]

1]

2]



Solution: Le polyndéme caractéristique est donné par

X -2 0 -1
X7(X) =det(X I3 — A) = det 0 X-1 0
—1 0 X -2

En développant selon la deuxiéme ligne, on obtient
X-2 -1 9
X)= (X —-1)det = (X -1)7(X -3).
X(X) = (X = 1) (_1 X_2>< P(x -3

Remarque : Parfois, det(A — X13) était calculé et accepté comme réponse.

Cela conduit au méme résultat sur les racines avec un signe global différent.

(b) Déterminer les valeurs propres de f et les sous-espaces propres associés. [1]

Solution: Les valeurs propres sont les racines du polynéme caractéristique,

a savoir 1 et 3. Pour A = 1, on trouve

ATy =

_ o =
o O O
=

By =Ker(A—I3) = {(z,y,2) € R* | 24+ 2 = 0} = Vect{(—1,0,1),(0,1,0)}

Pour A = 3, on trouve

-1 0 1
A-3L=10 -2 0
1 0 -1

Ey =Ker(A—3I3) = {(z,y,2) ER® |z =2,y = 0} = Vect{(1,0,1)}.

(c) Est-ce f est diagonalisable? Si oui, déterminer une base de vecteurs propres et [1]
donner la matrice de f dans cette base et la matrice de passage P de la base

canonique vers cette nouvelle base.

Solution: D’aprés la question précédente, les valeurs propres sont 1 et 3 avec
des sous-espaces propres de dimensions respectives 2 et 1. Ainsi, le polynéme
caractéristique est scindé et les multiplicités géométriques coincident avec les
multiplicités algébriques. D’aprés un critére de diagonalisabilité du cours, f

est donc diagonalisable.

Toujours d’apres le cours, une base de vecteurs propres est donnée par la
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réunion des bases des sous-espaces propres associés aux valeurs propres. Ainsi
{(-=1,0,1),(0,1,0),(1,0,1)} est une base de vecteurs propres.
La matrice de f dans cette base est diagonale avec les valeurs propres sur la

diagonale :

D=

o O =
S = O
w o O

La matrice de passage P de la base canonique vers cette nouvelle base est

formée par les vecteurs propres en colonnes :

—1
P=10
1

o = O
_ o =

Ainsi D = P~ 1AP.

Quel est le polynéome minimal de f 7

Solution: D’aprés un critére de diagonalisabilité du cours (critére III), f est
diagonalisable si, et seulement si, son polynéme minimal est scindé & racines

simples. D’apreés la question précédente, le polynéome minimal est donc
pp(X) = (X = 1)(X =3).

Remarque : On attendait ici simplement l'utilisation du critére, se basant
sur la diagonalisabilité de f montrée a la question précédente. Parfois il était
directement montré que muy annule f, ce qui était bien entendu tout aussi

correct.

(e) Déterminer toutes les matrices qui commutent avec A.

Solution: On cherche toutes les matrices X qui commutent avec A, c’est-a-
dire telles que AX = X A. On va chercher les matrices Y qui commutent avec
D. En effet, X commute avec A, si, et seulement si, Y = P71 X P commute

avec D :
AX = XA «— PDP'X=XpPDP!

«— P 'PDP'XP =P 'XPD
<= D(P'XP)=(P'XP)D
<— DY =YD
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On écrit donc :

1 00 a b ¢ a b ¢ 1 00
010 d e fl=|d e f 010
0 0 3 g h 1 g h i 00 3

On en déduit, par un calcul simple, que cela impose que Y est de la forme

S

0
e 0, (a,bdei€eR).
0 2

S Qe

Ainsi, les matrices qui commutent avec A sont les X telles que X = PY P71,

On obtient, par calcul matriciel,

ati —b —a+t
2 2
1 1 ;
X=|-3d e 3d |, (abdei)eR.
—a+i b a+i
2 2

puis quitte & renommer les paramétres, les matrices qui commutent avec A

sont celles de la forme

Remarque : On attendait ici la détermination de Y puis de X = PY P71,
On pouvait aussi raisonner directement sur A mais cela demandait un peu

plus de calculs.

3. Déterminer toutes les matrices de M,(C) dont le polynome minimal est

pa(X) =X —1.

diagonalisable.

uniquement les valeurs propres 1 et —1.

apparaitre au moins une fois. Donc k peut prendre les valeurs 1,2, 3.

Solution: Le polynéme minimal p4(X) = X2 —1 = (X — 1)(X + 1) est scindé
a racines simples. D’aprés un critére de diagonalisabilité du cours, A est donc

Ainsi, il existe une base de C* dans laquelle la matrice de A est diagonale avec

Soit k le nombre de fois que 1 apparait sur la diagonale. Alors —1 apparait 4 — k

fois. Le polynome minimal étant (X —1)(X +1), les deux valeurs propres doivent
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Par conséquent, les matrices de M, (C) dont le polynéme minimal est X% — 1 sont

celles qui sont semblables aux matrices diagonales suivantes :

1 0 0 0 10 0 0 100 0
0 -1 0 0 01 0 0 010 0
0 0 —-1 0| 00 -1 0| o071 0
0 0 0 -1 00 0 -1 000 —1

4. Soit f I'endomorphisme de C? dont la matrice dans la base canonique est

410
A=10 40
2 01

(a) Déterminer les valeurs propres de f, ainsi que leurs multiplicités algébriques et

géométriques.

Solution: Le polyndéme caractéristique de f est

X—-4 -1 0
Xf(X) =det(X 13 — A) = det 0 X—-4 0
—2 0 X -1

En développant selon la deuxiéme ligne, on obtient

X -4 0

Xf<X>:<X—4>det< el

):(X—@%X—1y

Ainsi, les valeurs propres de f sont 4 et 1 avec des multiplicités algébriques

respectives 2 et 1. Pour la valeur propre 4, on trouve

01 0
A—-4I;=10 0 0
2 0 =3

Le sous-espace propre associé est donc
Ey = Ker(A—4I3) = {(z,y,2) € C* | y = 0,22 — 32 = 0} = Vect {(3,0,2)}.

La multiplicité géométrique de la valeur propre 4 est donc 1. Pour la valeur
propre 1, on trouve

ATy =

N O W
S W =
o O O
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Le sous-espace propre associé est donc

Ey =Ker(A—1I3) = {(z,y,2) € C* | 3z + y = 0,22 = 0} = Vect{(0,0,1)}.

La multiplicité géométrique de la valeur propre 1 est donc 1.

(b) Construire une base de C* dans laquelle la matrice de f est 1]
410
J=10 4 0
001

Solution: Puisque la valeur propre 4 a une multiplicité algébrique de 2 et
une multiplicité géométrique de 1, pour construire une base adaptée, nous

partons du vecteur propre associé a la valeur propre 4,
U1 = <3a 07 2)7

puis nous cherchons un vecteur vy tel que (A — 413)vy = vy :

01 0\ [x 3
00 0]fyl=1]0
2 0 -3/ \z 2

En résolvant ce systéme, on trouve y = 3 et 2x — 3z = 2. En choisissant

z = 0, on obtient x = 1. Ainsi, un choix possible pour v, est
ve = (1,3,0).

Pour la valeur propre 1, nous avons déja le vecteur propre :
vg = (0,0,1).

Si P est la matrice dont les colonnes sont vy, vy, v3, alors P~AP = J. Ainsi,

une base de C? dans laquelle la matrice de f est J est donnée par

{Ul, Vo, U3} = {(3, 0, 2), (1, 3, 0)7 (0, 0, 1)}

(c) Monter que la décomposition de Dunford de J est 1]
4 00 010
J=104 0]+(0 0 0
0 01 000
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Solution: La décomposition de Dunford d’une matrice (trigonalisable) M

est 'unique écriture de M sous la forme
M = Ms + Mn;

ou M, est diagonalisable, M, est nilpotente, et M M, = M,M,. Pour la

matrice J, si

Js = In =

S O =
S = O
— O O
o O O
o O =
o O O

alors J; est diagonale (donc en particulier diagonalisable), la matrice J,, est

nilpotente d’ordre 2, puisque

010\ /010 000
J2=lo o0 o0ol|looo]l=]000
000/ \0 OO 000
et de plus, l'on a JgJ,, = J,Js :
40 0\ {010 040 010\ /400
040[loo0ool=[o0o0]l=]000]]040
001/ \0o 00 000 000/ \0o O°1

Ainsi, J = Js + J, est bien la décomposition de Dunford de J.

Remarque : On attendait ici la vérification explicite des propriétés de la

décomposition de Dunford et en particulier la commutation entre Jg et J,.

(d) En déduire celle de A.

Solution: Pour obtenir la décomposition de Dunford de A, nous utilisons la
matrice de passage P de la base canonique a la base dans laquelle A est sous

forme de Jordan J. La décomposition de Dunford de A est alors donnée par
A= As + Ana

ou A, := PJ,P et A, := PJ,P~!. En effet, A, est diagonalisable puisque
semblable a une matrice diagonale, et A,, est nilpotente d’ordre 2 puisque
A2 = PJ,P7'PJ,P~! = 0. De plus, on a

A A, = PJ.P'PJ, P ' =PJ,J,P ' =PJ,J,P ' =PJ, P 'PJ.P' = A, A,

Les propriétés de la décomposition de Dunford sont vérifiées. Par un calcul

Page 7

1]



matriciel, on trouve

S =

0
A=PJ,P 4+ PJ,P = 4

N O =
_ o O

0 0 4
+10 0Ol =10
0 0 2

S = =
_— o O

_2
3

wWro

Remarque : On attendait ici la vérification des propriétés ci-dessus de la
décomposition de Dunford et en particulier la commutation entre Ay et A,,

puis le calcul de A. Parfois, la décomposition “rapide” suivante était donnée :

010
+100 0

4 0
A=10 4
2 0 000

_ O O

La premiére matrice est bien diagonalisable (on pourra vérifier que l’espace
propre pour la valeur propre 4 est de dimension 2), et la seconde matrice est

bien nilpotente, mais les deux matrices ne commutent pas.

Calculer A* pour tout k& > 0.

Solution: Pour toute puissance £ € N on a
AF = (pJPp)" = pJEpP!,
car les P et P! se simplifient en chaine. Il est plus facile de calculer J*. On

reprend la décomposition de Dunford de J :
J=Js+ Jp.
Nous avons J,J,, = J,J,, donc par la formule du binéme de Newton,
k
k o
JE=(Jo+ )k = JETE
o =30 ()
Or, J, est nilpotente d’ordre 2, donc J? = 0. Ainsi, la formule précédente se
simplifie en
JE = JF v kI,
Calculons J* et JE=1 7,

45 0 0 0 41 0
JE=10 4 of, J¥'J.=10 0 0
0 0 1 0 0 0
Donc,
4k 4kl
JF =10 4 0
0 0 1
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Finalement,

gk k4k-1
Ak =pJjcp~t=plo 4 ol P
0 0 1

On obtient, par calcul matriciel simple la formule finale :

4k k4k—1 0
AR = 0 4k 0
2(4F—1) 2((Bk—4)4"1t+1) 1

Remarque : On attendait ici la justification de ['utilisation de la formule
de Newton, i.e. que J; et J, commutent. Puis, on attendait au moins le
calcul explicit de J*. Si lon raisonnait directement sur A, on attendait de
méme la justification de ['utilisation de la formule de Newton, puis la formule

AF = AF + EAFY AL, mais AF devait étre donné explicitement dans ce cas.

5. Soit £ un espace vectoriel complexe de dimension finie soient u,v € Z(F). On

SUppPoOse que 1% 0V = vV O U.

k

(a) Monter que u* o v = v o u* pour tout entier k£ > 0. [%)]

Solution: La propriété est évidente pour k = 0 car v = Idg et donc
Idgov = v o Idg. Supposons maintenant que la propriété est vraie pour

¥ ov =wvouF et montrons qu'elle

un certain entier £ > 0, c’est-a-dire que u
est vraie pour k£ + 1. En utilisant I’hypothése de récurrence et le fait que

UovV=17Oou, nous avons

u M ov=u"o(wou)=(uov)ou=(vouF)ou=1vo(uou)=uvouth

Ainsi, par récurrence, la propriété est vraie pour tout entier k£ > 0.

(b) En déduire que pour tout polynome P € C[X], on a P(u)ov =wvo P(u). [%)

Solution: Soit P(X) = Y "' ,a; X" un polynéme de degré n avec a; € C.

Nous avons
n

P(u)ov = <Z aiui> ov = Zai(ui o).

i=0
En utilisant le résultat de la partie précédente, nous savons que u‘ov = vou’

pour tout entier ¢ > 0. Ainsi,

P(u)ov = Zai(v ou')=vo <Z aiui> =vo P(u).

=0
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Par conséquent, pour tout polynome P, nous avons P(u)ov = v o P(u).

(c) Montrer que u est trigonalisable. En déduire que E est somme directe des sous-

espaces caractéristiques de u.

Solution: Puisque E est un espace vectoriel complexe de dimension finie, le
polynome caractéristique de u est scindé. Par un critére de trigonalisabilité
du cours, u est trigonalisable. De plus, d’aprés un résultat du cours (2.3.5),

E se décompose en somme directe des sous-espaces caractéristiques :

ot sp(u) est 'ensemble des valeurs propres de u et C) est le sous-espace

caractéristique associé a la valeur propre A.

(d) Montrer que chaque sous-espace caractéristique de u est stable par v.

Solution: Soit A une valeur propre de u et C'y le sous-espace caractéristique
associé. Par définition, C), = Ker((u — AIdg)™) ot m est la multiplicité
algébrique de A. Soit z € C) et montrons que v(z) € C), c’est-a-dire que
(u — AIdg)™v(x) = 0. En utilisant le fait que u et v commutent, nous avons,

grace a la partie (b),
(u—Aldg)"v(z) =v(u— AN1dg)"z = v(0) = 0.

Ainsi, v(x) € C), ce qui montre que C) est stable par v.

Remarque : Les exercices (a) et (b) étaient décomposés en deuz courts exercices pour
donner une indication comment démontrer P(u) o v = v o P(u) rigoureusement.
La question (c) était une application directe du cours, et faisait référence, pour la
trigonalisabilité de u, a la question de cours 1(a). Pour la stabilité des sous-espaces
caractéristiques par v, seul exercice un peu théorique du sujet, il suffisait d’utiliser
la partie (b) et la définition des sous-espaces caractéristiques qui €était le sujet de la

question de cours 1(b).

Question: 1 2 3 4 5) Total

Points: 3 5) 2 6 4 20

Score:
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