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Contrôle continu 1

Durée : 2h. Tous les documents et appareils électroniques sont interdits. La qualité de la rédaction
sera appréciée.

Question de cours (6 points)

Soit K = R ou C, n > 1 un entier et E = Kn.

1. (2 points) Donner la définition d’un cycle dans Sn.

2. (2 points) Donner la définition d’une forme n-linéaire alternée sur E.

3. (2 points) Soit u ∈ L(E). Donner la définition de “u est diagonalisable”.

Exercice 1 (3 points)

Soit n > 1 un entier. Décomposer les permutations suivantes en produit de cycles à supports disjoints,
et calculer leur signature.

1.

(
1 2 · · · 2n− 1 2n

2n 2n− 1 · · · 2 1

)
; 2.

(
1 2 3 · · · n− 2 n− 1 n
n 3 4 · · · n− 1 2 1

)
.

Solution. 1. La permutation s’écrit comme le produit de n transpositions

(1 2n) · · · (n n+ 1).

Sa signature vaut donc (−1)n.

2. La permutation s’écrit (1 n) (2 3 · · · n − 1). C’est le produit d’un cycle de longueur 2
et d’un cycle de longueur n− 2, donc sa signature vaut (−1)× (−1)n−3 = (−1)n−2 = (−1)n.

Exercice 2 (7 points)

Le but de l’exercice est de montrer le résultat suivant.

Proposition (Inégalité de réarrangement). Soient n > 1 un entier et x1, . . . , xn, y1, . . . , yn des réels
tels que

x1 < · · · < xn et y1 < · · · < yn.

Alors pour toute permutation σ ∈ Sn \ {id}, on a
n∑
i=1

xiyσ(i) <
n∑
i=1

xiyi.
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1. (1 point) Montrer la proposition pour n = 2.
Indication. On pourra considérer le produit (x2 − x1)(y2 − y1).

Solution. Soit σ ∈ S2 \ {id}. Alors σ = (1 2). Ainsi

2∑
i=1

xiyσ(i) = x1y2 + x2y1.

Or on a 0 < (x2 − x1)(y2 − y1) = x1y1 + x2y2 − x1y2 − x2y1, ce qui implique

x1y1 + x2y2 > x1y2 + x2y1.

La proposition est donc démontrée pour n = 2.

2. On suppose à présent n > 1 quelconque et on se donne σ ∈ Sn \ {id}.

a. (2 points) Montrer que le nombre d’inversions Nσ de σ est strictement positif.
Indication. On pourra remarquer que si Nσ = 0 alors σ(1) < · · · < σ(n).

Solution. On a Nσ > 0. Si Nσ = 0, alors aucune paire n’est inversée par σ, si bien que
σ(i) < σ(j) pour tous i < j. Ceci implique immédiatement que

σ(1) < σ(2) < · · · < σ(n),

mais comme σ est une bijection de {1, . . . , n}, on obtient σ(i) = i pour tout i = 1, . . . , n,
donc σ = id. Par contraposée on obtient que Nσ > 0 pour toute σ ∈ Sn \ {id}.

On fixe à présent i < j tels que la paire (i, j) est inversée par σ, c’est-à-dire que σ(i) > σ(j).
On note τ la permutation τ = (σ(i)σ(j)), et on pose ρ = τσ.

b. (1 point) Montrer que xkyρ(k) = xkyσ(k) pour tout k 6= i, j.

Solution. Si k /∈ {i, j}, on a σ(k) /∈ {σ(i), σ(j)} = supp τ , donc ρ(k) = τ(σ(k)) = σ(k).
Par suite yρ(k) = yσ(k) et le résultat en découle.

c. (1 point) En utilisant la question ??, montrer que

xiyρ(i) + xjyρ(j) > xiyσ(i) + xjyσ(j).

Déduire des deux questions précédentes que
n∑
k=1

xkyρ(k) >

n∑
k=1

xkyσ(k).

Solution. Comme la paire (i, j) est inversée par σ, on a σ(j) < σ(i) et par conséquent on
obtient

xi < xj et yσ(j) < yσ(i).

On applique la question 1. en remplaçant x1, x2, y1 et y2 respectivement par xi, xj, yσ(j) et
yσ(i) ; il vient

xiyσ(i) + xjyσ(j) < xiyσ(j) + xjyσ(i).

Mais σ(j) = ρ(i) et σ(i) = ρ(j) par définition de ρ = τσ, donc on obtient bien

xiyρ(i) + xjyρ(j) > xiyσ(i) + xjyσ(j).

Par la question b., on a
n∑
k=1
k 6=i,j

xkyσ(k) =
n∑
k=1
k 6=i,j

xkyρ(k),
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et en combinant cette égalité avec l’inégalité précédente on conclut finalement que

n∑
k=1

xkyρ(k) >

n∑
k=1

xkyσ(k).

d. Conclure. (2 points)

Solution. On a montré que pour toute permutation σ 6= id, il existe une permutation ρ
telle que A(σ) < A(ρ), où a on a noté

A(σ) =
n∑
i=1

xiyσ(i).

Soit ω ∈ Sn qui maximise la fonction A : Sn → R, i.e. telle que

A(ω) = max
σ∈Sn

A(σ).

Alors on affirme que ω = id. En effet, si ce n’était pas le cas, on pourrait trouver ρ ∈ Sn

telle que A(ω) < A(ρ), ce qui est absurde par maximalité de A(ω). Ainsi la permutation
triviale est l’unique permutation qui maximise la fonction A, et par conséquent on obtient

A(σ) < A(id)

pour toute permutation σ 6= id, ce qu’il fallait démontrer.

Exercice 3 (10 points)

Soit n > 1. On se donne λ1, . . . , λn ∈ K deux à deux distincts. On rappelle que

det
(
V(λ1, . . . , λn)

)
=

∏
16i<j6n

(λj − λi) où V(λ1, . . . , λn) =

 1 · · · 1
...

...
λn−11 . . . λn−1n

 .

1. (1 point) Montrer que le déterminant d’une matrice à coefficients entiers est un nombre entier.

Solution. Soit A = (ai,j) ∈ Mn(Z). Alors

detA =
∑
σ∈Sn

ε(σ)
n∏
i=1

ai,σ(i) ∈ Z.

En effet, pour toute permutation σ ∈ Sn on a ε(σ) ∈ {−1, 1}, et comme les coefficients de A
sont entiers, on obtient que ε(σ)

∏n
i=1 ai,σ(i) est un entier.

2. Soient P0, . . . , Pn−1 ∈ K[X] des polynômes unitaires, avec degPm = m, qu’on écrit

Pm =
m∑
k=1

am,kX
k−1 +Xm, m = 0, . . . , n− 1.

On note A ∈ Mn(K) la matrice dont le coefficient en place (i, j) est Pi−1(λj).
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a. (2 points) Montrer que

A =

 P0(λ1) · · · P0(λn)
...

...
Pn−1(λ1) . . . Pn−1(λn)

 =


1 0 · · · 0

a1,1 1
. . .

...
...

. . . . . . 0
an−1,1 · · · an−1,n−1 1

 ·V(λ1, . . . , λn).

Solution. On note B = (bi,j) la matrice à gauche du produit dans le membre de droite de
l’égalité ci-dessus. Alors le coefficient en place (i, j) de B ·V(λ1, . . . , λn) vaut

ci,j =
n∑
k=1

bi,kλ
k−1
j .

On a bi,k = ai,k pour tout k < i et bi,i = 1, ce qui donne

ci,j = ai,1 + ai,2λj + · · ·+ ai,i−1λ
i−2
j + λi−1j = Pi−1(λj),

ce qui cöıncide avec le coefficient en place (i, j) de A.

b. (1 point) En déduire la valeur de det(A).

Solution. La matrice B est triangulaire inférieure, donc son déterminant est égal au
produit de ses éléments diagonaux, soit 1. Par suite

det A = det(B ·V(λ1, . . . , λn)) = det(B) det(V (λ1, . . . , λn)) =
∏

16i<j6n

(λj − λi).

3. (2 points) On pose H0 = 1 et Hm = 1
m!
X(X − 1) · · · (X −m + 1) pour tout m = 1, . . . , n− 1.

En utilisant la question précédente, montrer que

det(A) =

( ∏
16i<j6n

(λj − λi)

)(
n−1∏
m=0

m!

)−1

où A ∈ Mn(K) la matrice dont le coefficient en place (i, j) est Hi−1(λj).

Solution. Soit A la matrice dont le coefficient en place (i, j) est Hi−1(λj). On a Pm = m!Hm

où Pm est un polynôme unitaire de degré m. Ainsi, on a

Ã =

0! 0
. . .

0 (n− 1)!

 ·A,
où Ã est la matrice dont le coefficient en place (i, j) est Pi−1(λj). En effet, multiplier Ã par
une matrice diagonale D = (di,j) revient à multiplier sa ieme colonne par le coefficient di,i, pour

tout i = 1, . . . , n. Par la question précédente, on a det Ã =
∏

16i<j6n (λj − λi), d’où l’on tire

∏
16i<j6n

(λj − λi) =

(
n−1∏
m=0

m!

)
det A,

ce qui donne det A =
(∏n−1

m=0m!
)−1∏

16i<j6n (λj − λi).
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4. (2 points) On admet que Hm(Z) ⊂ Z pour tout m = 0, . . . , n − 1. Montrer en utilisant la
question 1. et la question précédente que pour tous entiers relatifs k1 < · · · < kn on a∏

16i<j6n

kj − ki
j − i

∈ Z.

Solution. Remarquons d’abord que

∏
16i<j6n

(j − i) =
n∏
i=1

n∏
j=i+1

(j − i) =
n∏
i=1

(n− i)! =
n−1∏
m=0

m!.

Dès lors, en appliquant le résultat de la question 3. avec λj = kj pour tout j = 1, . . . , n, on
obtient

det A =

(
n−1∏
m=0

m!

)−1 ∏
16i<j6n

(λj − λi) =
∏

16i<j6n

kj − ki
j − i

.

En utilisant que Hm(Z) ⊂ Z, on obtient que A est à coefficients entiers, et donc det A ∈ Z par
la question 1., ce qui conclut.

5. (Hors barème, 2 points) Montrer que Hm(Z) ⊂ Z.

Solution. Si m = 0 ou m = 1, c’est clair. On se donne m > 2 un entier et k ∈ Z. Si
k ∈ {0, . . . ,m− 1}, alors Hm(k) = 0 ∈ Z. Si k > m, alors on a

Hm(k) =
k(k − 1) · · · (k −m+ 1)

m!
=

(
k
m

)
∈ Z.

Enfin k < 0, écrivons k = −a avec a > 0. On a

Hm(k) =
(−a)(−a− 1) · · · (−a−m+ 1)

m!
= (−1)m

a(a+ 1) · · · (a+m− 1)

m!
=

(
a+m− 1

m

)
∈ Z.

? ? ?
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