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Examen

Tous les documents et appareils électroniques sont interdits. La qualité de la rédaction sera appréciée.
Le barème est donné à titre indicatif.

Question de cours (5 points)

Soit K = R ou C. Soient E un espace vectoriel sur K de dimension finie n > 1 et u ∈ L(E).

1. Définir l’espace dual E∗ de E et l’endomorphisme transposé tu de u.

2. Qu’est-ce qu’une forme bilinéaire sur E ? Une forme quadratique ?

Exercice (8 points)

Soit K = R ou C. Soient E un espace vectoriel sur K de dimension finie n > 1 et u ∈ L(E). On
rappelle qu’un hyperplan de E est un sous-espace vectoriel de E de dimension n − 1. On dit qu’un
hyperplan H est stable par u si u(H) ⊂ H.

1. Montrer qu’un sous-ensemble H de E est un hyperplan si et seulement si il existe ` ∈ E∗ non
nulle telle que H = ker `.

2. Soit H un hyperplan de E et ` ∈ E∗ telle que ker ` = H. Montrer que ` est un vecteur propre
de tu si et seulement si H est stable par u.

3. On suppose K = R et n impair. Montrer qu’il existe un hyperplan de E qui est stable par u.

Indication. On pourra commencer par montrer qu’un polynôme réel de degré impair a une
racine réelle.

4. Trouver un hyperplan de R3 stable par l’application linéaire canoniquement associée à

0 −1 0
1 0 0
2 0 1

 .

Problème (10 points)

Dans ce problème on se propose de démontrer le résultat suivant.

Théorème. Soit K = R ou C et A ∈ Mn(K). Alors il existe P ∈ GLn(K) telle que tA = P−1AP.
Autrement dit, toute matrice est semblable à sa transposée.

On montre le cas K = C dans la partie I, et le cas K = R dans la partie II. Les deux parties sont
indépendantes. La partie II du problème est facultative.
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I. Le cas K = C
On commence par supposer K = C. Soit A ∈ Mn(C) et u ∈ L(Cn) l’endomorphisme canoniquement
associé. On note Σ = sp(u) = {λ1, . . . , λr} le spectre de u, où les λj sont deux à deux distincts.

1. Montrer qu’il existe des espaces Cj, j = 1, . . . , r, qui sont stables par u, tels que

Cn = C1 ⊕ · · · ⊕ Cr,

et tels que pour tout j = 1, . . . , r, l’endomorphisme nj ∈ L(Cj) est nilpotent, où on a noté

nj = uj − λjidCj
avec uj = u|Cj

∈ L(Cj).

Dans toute la suite, pour j = 1, . . . , r, on note αj = dimCj, on fixe une base βj de Cj, et on note
Nj ∈ Mαj

(C) la matrice de nj dans la base βj. On note β = β1 ⊕ · · · ⊕ βr la base de Cn obtenue par
concaténation, et β∗ sa base duale. Enfin pour α ∈ N on note Iα la matrice identité de taille α.

2. Montrer que la matrice de tu dans la base β∗ est la matrice par blocs donnée par

[
tu
]
β∗ =

λ1Iα1 + tN1 0
. . .

0 λrIαr + tNr



Pour k ∈ N on note Jk =


0 1 0

. . . . . .
. . . 1

0 0

 ∈ Mk(C).

3. Montrer que pour tout k, il existe Qk ∈ GLk(C) telle que tJk = Q−1
k JkQk.

4. En déduire que pour tout α ∈ N et toute matrice nilpotente N ∈ Mα(C), il existe S ∈ GLα(C)
telle que tN = S−1NS.

Indication. On pourra utiliser sans démonstration le résultat vu en cours qui donne l’existence
de R ∈ GLα(C) telle que R−1NR est une matrice par blocs de la forme Jk1 0

. . .

0 Jks



avec k1 + · · ·+ ks = α, puis considérer la matrice S = R×

 Qk1 0
. . .

0 Qks

× tR.

5. Montrer que pour tout j = 1, . . . , r, il existe Sj ∈ GLαj
(C) telle que

t(λjIαj
+Nj) = S−1

j (λjIαj
+Nj)Sj.

6. Montrer qu’il existe S ∈ GLn(C) telle que[
tu
]
β∗ = S−1[u]βS.

7. Montrer enfin qu’il existe P ∈ GLn(C) telle que tA = P−1AP.
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II. Le cas K = R (Bonus, hors barème)

On suppose maintenant K = R, et on se donne A ∈ Mn(R). On admet le résultat pour K = C montré
dans la partie précédente : il existe P ∈ GLn(C) telle que tA = P−1AP. On cherche à trouver une

autre matrice P̃ à coefficients réels, telle que tA = P̃−1AP̃ .

8. Soient R et Q les matrices à coefficients réels telles que

P = R + iQ.

Montrer que P tA = AP et en déduire que

R tA = AR et Q tA = AQ.

9. Pour t ∈ R on pose f(t) = det(R + tQ). Montrer que f est une fonction polynomiale et non
nulle.

10. En déduire qu’il existe τ ∈ R tel que P̃ = R + τQ est inversible.

11. Montrer que P̃ tA = AP̃ et conclure.
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