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X31MO020 - Algebre linéaire et bilinéaire 2

DEVOIR MAISON : CORRIGE

Nota Bene. Si vous le souhaitez (c’est encouragé), vous pouvez travailler en groupe. Un groupe
peut contenir jusqu’a trois éleves.

Soit K=TR ou C et n > 1 un entier. Pour toute matrice A € M,,(K), on note
[AX]|

Al = X
xeM,1(x0Nfoy Xl
Ici la norme || - || choisie sur 'espace My, 1 (K) des vecteurs colonnes est la norme euclidienne,
n I
I X = Z |z;|2  pour tout vecteur colonne X = | : | € M, ;(K).
j=1 T
I — PRELIMINAIRES
1. Montrer que ||| - ||| est une norme sur M, (K).

Solution. Déja, remarquons que pour tout A = (ai;) € Mu(K), ||A|| est bien défini. En
effet, pour tout k =1,...,n et X = Y(z1,...,2,) € My 1(K), on a

> apeme <Y ( |ak,€||$£|)
(=1 k=1 \/=1
n n 2
<X <Z !ak,e|>

k=1 \/=1

n

DIAXP =)
k=1

k=1

0t || X ||oo = sup; |zi|. Notons que | X||* =, |i|* > || X||%, de sorte qu’on obtient

n

n 2
IAX|| < CIX[| ot C=,|> (Z\au> :
k=1 \/=1

On en déduit immédiatement que

AX
4] = sup X 0 o
x20 |1 X
Vérifions a présent que ||-|| est une norme. La positivité, [’homogénéité et l’inégalité
triangulaire découlent directement du fait que || - || est une norme. Il reste a vérifier la

séparation : soit A € M, (K) telle que ||A|| = 0. Alors par définition de ||Al| on a AX =0
pour tout X # 0. Il suit que l’endomorphisme de R™ canoniquement associé a A est nul,
donc A est la matrice nulle.

2. Montrer que c’est une norme d’algebre, dans le sens ou
ABI < [IAll - 1Bl, A, B € Mp(K).
Solution. 1l suit de la définition de la norme triple que pour tous A € M,,(K) et X # 0 on

a |AX] < |ANX]| (¢’est aussi vrai si X = 0). Ainsi si A, B sont deux matrices carrées
de taille n et X #0, on a

[ABXI| < [lAll- IBXI < Al - B X

Il suit immédiatement que ||AB|| < || A|| - || B]|-



3. En déduire que pour toute matrice A, la suite (Ay)nen définie par

est une suite de Cauchy dans M, (K).

Solution. Soit € >0 et p,q € N avec p < q. On a

q Y q 4
A Al
h4q = Al = (|30 7| < D2 5

l=p l=p

La série ), A€ /¢! converge vers exp || A|. En particulier la suite des sommes partielles

(Zé\]:o |HAH|€/€!>N est de Cauchy dans K, donc il existe N > 0 tel que pour tous p,q > N
eN
avec q =p on a

Il suit que ||Aq — Ap|| < € pour tous p,q > N, donc (An) est une suite de Cauchy dans

Dans toute la suite, on notera exp A ou encore e” la matrice limite

0 é

exp A Z—' = lim Apy.

N—oo
/=0

II — PROPRIETES DE L’EXPONENTIELLE DE MATRICE

4. Montrer que si A et B commutent, alors eAT8 = e4eB.

Solution. Comme A et B commutent, on peut appliquer la formule du binome de Newton
et pour tout m >0 on a

(A+B)WL m Ak Bm—k

| - E (m— k)
m! — k! (m — k)!

Soient Ay = S0 AL/0! et By = S0, BY/t!. Alors

AF B
0<k, (<N

D’autre part posons C = A+ B et Cy = Z%ZO(A + B)™/ml. Alors
Ak Bm—k Ak BZ
CN:ZZk!(m—k)!: > e @)
m=0 k=0 (k,0)eP(N)

ou P(N) est ’ensemble des couples (k,l) avec 0 < k, £ < N et vérifiant k+ ¢ < N. On
définit aussi

Q(N)=1{0,...,N¥*\ P(N) = {(k,£) € {0,...,N}* : k4+£> N}.

Alors les équations (1) et (2) impliquent

AF Bf
(k0)EQ(N)



Notons oo = max(|| A|l, [|B|I). Alors pour tout (k,£) € Q(N), on a k+ € < 2N et donc
H’AkBEH‘ < oft < a?N. De plus, on a k = N/2 ou £ > N/2 donc k!0! > |N/2]!. Ainsi
Ak B

on a montré
— ||| <
H k0 |N/2]!
Comme Card Q(N) < N2, on obtient finalement

OKQN

N2a2N
_ <=

En particulier,

(QN)Q(Q4)N 02/ 4\2
[[A2n Ban — Conl|| < — = 2°(a”) N

N2 (a4)N_2
— 0.
(N —1)(N —2)! Nooo
En effet (a*)¢/0! est le terme général de la série définissant exp(at), donc tend vers zéro

quand ¢ — co. Maintenant, on remarque que AanyBan — exp(A) exp(B) et Cany — exp(C)
quand N — 0o, donc on obtient bien le résultat voulu.

. En déduire que pour A € M,,(K), la matrice exp A est inversible et calculer son inverse.
Solution. Comme A et —A commutent, on a par la question précédente
ele A =e e =eA 4 =0 = I,.
Ainsi e? est inversible d’inverse e= .
. Montrer que pour si A € M, (K) et P € GL,,(K) alors
exp(P rAP) = P~ exp(A)P.
Solution. Soit A € M, (K). On considére la suite (Ayn) de la question 3., ainsi la suite

(By) obtenue en remplacant A par P~*AP. On a

N N N
o (PtAP)Y 3 p=tatp 3 AN\

L’application A — P~LAP est continue M, (K) — M, (K), on obtient en faisant tendre N
vers +0o,
exp(P 1AP) = lim By = lim P 'ANP = P lexp(A)P.

. Montrer que pour toute A € M,,(K) on a
detexp A = exptr A.

Indication. On pourra le montrer pour les matrices complexes triangulaires supérieures et
en déduire le cas général.

Solution. Soit T € M,,(C) une matrice triangulaire supérieure. On note A1, ..., \, ses coef-
ficients diagonauz. Une récurrence immédiate donne que pour tout £ € N, la matrice T /(!
est triangulaire supérieure et ses coefficients diagonaux sont donnés par )\f/ﬂ, R )\fL/E!.
Puisque que pour tout 7 =1,...,n on a

exp \j = Z E—f
=0

on obtient que expT est triangulaire supérieure et que ses coefficients diagonauxr sont
donnés par exp \i,...,exp \,. Il suit que

n n
detexpT = Hexp)\j = epo)\j =exptrT.
j=1 j=1



Soit maintenant A € M,,(K) quelconque. On a K C C et le polynome caractéristique de A
est scindé sur C. Par suite A est trigonalisable sur le corps C, et il existe P € GL,(C) telle
que T = P~YAP soit triangulaire supérieure. Par ce qui précéde on a detexpT = exptrT.
Comme A et T sont semblables, on a aussi tr'T = tr A. D’autre part exp A et expT sont
aussi semblables par la question 6., donc detexp A = detexpT'. Finalement

detexp A = detexpT = exptrT = exptrA.

On dit qu'une application R — M, (K), ¢ — A(t) est de classe €' si pour tous 1 < i,j < n, le
coefficient A(t);; en place (i,;) de A(t) dépend de maniere € de t.

8. Soit A € M, (K). Montrer que I’application

R — M,(K), t~ exp(tA)

d
est de classe €' et qu'on a T exp(tA) = Aexp(tA).

Solution. Soient 1 < i,7 < n. On veut montrer que la fonction f : R — K est €1 sur R,
ot f(t) est le coefficient en place (i,7) de et pour tout t € R. On a

= 0.

- (tA)).. o
f(t) = %fz(t) ot fi(t) = ( ; )%J _ (AE!)Z] ¢

Meéthode 1 (dérivation terme a terme). On applique le théoréme de dérivation sous le
signe somme, et pour cela on va montrer que pour tout intervalle borné du type I, = [—r, 7]
avecr >0, on a

Y fellosyr, <00 et Y N filloo,r, < 00 (3)
14 l

ou pour toute fonction g continue sur R on a noté ||g|le,r, = supy |g|. On veut donc
magorer les fonctions |fy| et | f)| uniformément sur I,.

Notons que pour toute matrice B = (b;j) € Mu(K), on a |bj;| < [|B|. En effet, si
e; € My, 1(K) est le vecteur colonne dont toutes les entrées sont nulles sauf la j° qui vaut
1, le vecteur Be;j est la j¢ colonne de B. Ainsi

bi| < Bejll < [IBIl - lle;ll = I BI[-
On obtient donc pour tout £ € N
¢
Al <||l4| < nan

Fizons r > 0. On a pour tout £ € N

A% Al || All)*
e = [Cgee < Bo gy < CIDE,y n
Les fonctions f, sont toutes de classe €' (car polynomiales). On a 1o = 0 et pour tout
(>1,
A o r[|ANET
e = |2 < nan =, < )

Comme la série de terme général (r||Al])¢/€! converge, on en déduit (3). Le théoréme de
dérivation sous le signe somme s’applique et f est de classe €* sur [—r,r] et f' coincide
avec la fonction somme 2520 f;- Ceci étant vrai pour tout v > 0, on obtient que f est de
classe €1 sur R avec

0 (AZ+1)ij tg

FO =3 fn=> 5" (6)
=0 ’

=0

4



Méthode 2 (avec les séries entieres). On voit que f(t) =3, ayutt est la fonction somme
de la série entiére dont le terme général est oy = (A%);;/¢). Comme dans la méthode 1, on
a|agrt < (r[|AlNE/L, donc la suite (apr®) est bornée pour tout v > 0. Il suit que la série
entiére ), aptt a un rayon de convergence infini, donc f est € sur R et la relation (6)
est satisfaite.

Soit An(t) = Zévzo(tA)e/E!. Le coefficient en place (i,7) de AAN(t) est donné par

N
(Af—i-l)i »tf

(=0

En faisant N — 0o on obtient que le coefficient en place (i,7) de Aexp(tA) est donné par

flit)y=4 (etA)ij. Comme c’est vrai pour tout (i,7), on obtient le résultat voulu.

. Montrer que pour tous A € M,,(K) et X € M,, 1(K), le systeme

X'(t) = AX(t)
{ X(0) = Xo

admet une unique solution X € €(R, M, 1(K)) qui est donnée par
X(t) =exp(td)Xo, teR.
Solution. La question précédente donne immédiatement que l'application t — exp(tA)Xo

est solution du systéme. Nous allons montrer que c’est la seule. Déja, on remarque que
puisque AAN(t) = An(t)A (ot An(t) est définie dans la question précédente), on a

Aexp(tA) = exp(tA)A
pour tout t € R. On se donne X : t — X(t) une solution du systéme et on pose
X(t) = e MX(t).
Puisque %(exp(—tA)) = —Aexp(—tA) = —exp(—tA)A, on obtient

%X(t) _ @e—ff‘) X(8) + e MX(t) = (—e A A) X (1) + e HAAX (1) = 0. (7)

Ainsi t — X(t) est constante et X (t) = X(0) = Xo pour tout t € R. On multipliant par
etd on obtient, par la question 5.,

X(t) = X (1) = e X,

done t — e Xy est l'unique solution du systéme.

Remargue. Pour obtenir (7), on a utilisé le fait suivant : si A(t) et B(t) sont des matrices

de tailles respectives m x n et n X p, qui dépendent de maniére €' de t, alors le produit
C(t) = A(t)B(t) est aussi €1 en't et

C'(t) = A(t)B(t) + A(t)B'(t). (8)

En effet, soient 1 <i<m et1l<j<p. Le coefficient en place (i,75) de C(t) est donné par

C(t)ij =Y At)irB(t)k;-

k=1

n

Comme les coefficients de A(t) et B(t) sont de classe €, on obtient que t — C(t);; est
aussi de classe €1 avec

n

Sty =3 AWuBy + Y AWwB 0y = (ADBE) + ADB (1),
k=1 k=1

Ceci est exactement l’équation (8).



III — METHODE POUR CALCULER L’EXPONENTIELLE D’UNE MATRICE

10. Montrer que si A = diag(A1,...,\,) est une matrice diagonale, avec \; € K pour tout
7=1,...,n, alors
exp A = diag(e, ..., eM).

Solution. Pour tout £ on a A*/0! = diag(\{/0!,... X, /01). On en déduit immédiatement le

résultat.
11. Soit Q, = — € K[X]. Montrer que pour toute matrice nilpotente N € M,,(K) on a

£
=0

exp N = Q,(N).

Solution. En effet, soit N nilpotente, donc il existe p tel que NP = 0. Comme N est de
taille n, on a vu en cours que N™ = 0. Démontrons le rapidement. Le polynome minimal
un de N divise XP, donc uy = X9 avec ¢ < n puisqu’il est de degré au plus n. Ainsi
N™ = N" 9N = (. On obtient alors N* = 0 pour tout £ > n. Ainsi, on obtient

eXpN:ZW: W:QH(N)'
/=0 =0

Remarque. En fait on a méme Q,—1(N) =exp N puisque N™ = 0.

12. Soit A € M, (K) telle que son polynoéme caractéristique x 4 soit scindé. Montrer qu’il existe
une matrice diagonale A, une matrice nilpotente N et une matrice inversible P € GL,,(K)
telles que

exp(tA) = P~ lexp(tA)P Q,(tN), teR.

Indication. On pourra utiliser la décomposition de Dunford A = D + N de A et écrire
D = P7'AP avec A diagonale.

Solution. Soitt € R. Le polynome caractéristique de A étant scindé, A admet une décomposition
de Dunford, que l’'on note A = D + N. La matrice D est diagonalisable, N est nilpotente,
et DN = ND. Comme D et N commutent, on a par la question 4.,

exp(tA) = exp(t(D + N)) = exp(tD) exp(tN).

La matrice D est diagonalisable donc il existe une matrice diagonale A et P € GL,(K)
telles que D = P~YAP. Par la question 6. on obtient exp(tD) = P~ lexp(tA)P. Enfin
comme tN est nilpotente on a exp(tN) = Qn(tN) par la question précédente, et on obtient
bien

exp(tA) = P lexp(tA)PQ,(tN), tcR.

IV — APPLICATION

13. Soit (a,b,c) € R3. En utilisant les questions 9 et 12, déterminer les solutions z(¢),y(t) et
z(t) au systéme

) =z(t) —y@), y@)=z@)—z(), Z(t)=—-z()+22(t), teR,
avec z(0) = a, y(0) =b et 2(0) = c.
Solution. Soit Xo = '(a,b,c) € M3 1(R). On cherche les solutions

t X(t) =" (z(t),yt),2(t))



au systéme linéaire

1 -1 0
o A=|[1 0 —1]¢eM;sR).

{ X'(t) = AX(t)
-1 0 2

X(0) = Xo.

On calcule xA(X) = (1 — X)3. Ainsi xa est scindé sur R et sa seule valeur propre de A
est 1. Soit A= D+ N la décomposition de Dunford de A. La matrice D est diagonalisable
et n’a que 1 comme valeur propre; c’est donc nécessairement la matrice identité, D = I3.
On a donc exp(tD) = exp(tl3) = e' I3. D’autre part

0 -1 0
N=A-D=A-I3=|1 -1 -1
-1 0 1
-1 1 1
OnaN?>= [0 0 0] et N> =0 (ce quon savait déja par le théoréme de Cayley—
-1 1 1
Hamilton), de sorte que
2 N2 1—t2/2 —t+t%/2 t2/2
Q3(tN) =I3+ tN + 5= t 1—t —t

—t—t2/2  t2)2 L+t+1t%/2
pour tout t € R. Finalement par la question précédente on a
exp(tA) = exp(t)Q3(tN)

et on en déduit que pour toutt € R

Ceci donne enfin, pour tout réel t,
2(t) = e [a (1—12/2) + b (—t +12/2) + ct2/2} ;
y(t) = e [at +b(1—1t)— ct} ;

2(t) = ¢t [a (—t —12/2) + b2 /2 + ¢ (1 +t+t2/2)}.



