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Devoir maison : corrigé

Nota Bene. Si vous le souhaitez (c’est encouragé), vous pouvez travailler en groupe. Un groupe
peut contenir jusqu’à trois élèves.

Soit K = R ou C et n > 1 un entier. Pour toute matrice A ∈ Mn(K), on note

|||A||| = sup
X∈Mn,1(K)\{0}

‖AX‖
‖X‖

.

Ici la norme ‖ · ‖ choisie sur l’espace Mn,1(K) des vecteurs colonnes est la norme euclidienne,

‖X‖ =

√√√√ n∑
j=1

|xj |2 pour tout vecteur colonne X =

x1...
xn

 ∈ Mn,1(K).

I — Préliminaires

1. Montrer que ||| · ||| est une norme sur Mn(K).

Solution. Déjà, remarquons que pour tout A = (aij) ∈ Mn(K), |||A||| est bien défini. En
effet, pour tout k = 1, . . . , n et X = t(x1, . . . , xn) ∈ Mn,1(K), on a

n∑
k=1

|(AX)k|2 =

n∑
k=1

∣∣∣∣∣
n∑
`=1

ak,`x`

∣∣∣∣∣
2

6
n∑
k=1

(
n∑
`=1

|ak,`||x`|

)2

6 ‖X‖2∞
n∑
k=1

(
n∑
`=1

|ak,`|

)2

où ‖X‖∞ = supi |xi|. Notons que ‖X‖2 =
∑

i |xi|2 > ‖X‖2∞, de sorte qu’on obtient

‖AX‖ 6 C‖X‖ où C =

√√√√ n∑
k=1

(
n∑
`=1

|ak,`|

)2

.

On en déduit immédiatement que

|||A||| = sup
X 6=0

‖AX‖
‖X‖

6 C <∞.

Vérifions à présent que ||| · ||| est une norme. La positivité, l’homogénéité et l’inégalité
triangulaire découlent directement du fait que ‖ · ‖ est une norme. Il reste à vérifier la
séparation : soit A ∈ Mn(K) telle que |||A||| = 0. Alors par définition de |||A||| on a AX = 0
pour tout X 6= 0. Il suit que l’endomorphisme de Rn canoniquement associé à A est nul,
donc A est la matrice nulle.

2. Montrer que c’est une norme d’algèbre, dans le sens où

|||AB||| 6 |||A||| · |||B|||, A,B ∈ Mn(K).

Solution. Il suit de la définition de la norme triple que pour tous A ∈ Mn(K) et X 6= 0 on
a ‖AX‖ 6 |||A|||‖X‖ (c’est aussi vrai si X = 0). Ainsi si A,B sont deux matrices carrées
de taille n et X 6= 0, on a

‖ABX‖ 6 |||A||| · ‖BX‖ 6 |||A||| · |||B||| · ‖X‖.

Il suit immédiatement que |||AB||| 6 |||A||| · |||B|||.
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3. En déduire que pour toute matrice A, la suite (AN )N∈N définie par

AN =

N∑
`=0

A`

`!

est une suite de Cauchy dans Mn(K).

Solution. Soit ε > 0 et p, q ∈ N avec p 6 q. On a

|||Aq −Ap||| =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
q∑
`=p

A`

`

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ 6

q∑
`=p

|||A|||`

`!
.

La série
∑

` |||A|||
`/`! converge vers exp |||A|||. En particulier la suite des sommes partielles(∑N

`=0 |||A|||
`/`!
)
N∈N

est de Cauchy dans K, donc il existe N > 0 tel que pour tous p, q > N

avec q > p on a
q∑
`=p

|||A|||`

`!
< ε.

Il suit que |||Aq −Ap||| < ε pour tous p, q > N , donc (AN ) est une suite de Cauchy dans
Mn(K).

Dans toute la suite, on notera expA ou encore eA la matrice limite

expA =
∞∑
`=0

A`

`!
= lim

N→∞
AN .

II — Propriétés de l’exponentielle de matrice

4. Montrer que si A et B commutent, alors eA+B = eAeB.

Solution. Comme A et B commutent, on peut appliquer la formule du binôme de Newton
et pour tout m > 0 on a

(A+B)m

m!
=

m∑
k=0

Ak

k!

Bm−k

(m− k)!
.

Soient AN =
∑N

k=0A
`/`! et BN =

∑N
`=0B

`/`!. Alors

ANBN =
∑

06k,`6N

Ak

k!

B`

`!
. (1)

D’autre part posons C = A+B et CN =
∑N

m=0(A+B)m/m!. Alors

CN =

N∑
m=0

m∑
k=0

Ak

k!

Bm−k

(m− k)!
=

∑
(k,`)∈P (N)

Ak

k!

B`

`!
(2)

où P (N) est l’ensemble des couples (k, `) avec 0 6 k, ` 6 N et vérifiant k + ` 6 N . On
définit aussi

Q(N) = {0, . . . , N}2 \ P (N) = {(k, `) ∈ {0, . . . , N}2 : k + ` > N}.

Alors les équations (1) et (2) impliquent

ANBN − CN =
∑

(k,`)∈Q(N)

Ak

k!

B`

`!
.

2



Notons α = max(|||A|||, |||B|||). Alors pour tout (k, `) ∈ Q(N), on a k + ` 6 2N et donc∣∣∣∣∣∣AkB`
∣∣∣∣∣∣ 6 αk+` 6 α2N . De plus, on a k > N/2 ou ` > N/2 donc k! `! > bN/2c!. Ainsi

on a montré ∣∣∣∣∣∣∣∣∣∣∣∣Akk!

B`

`!

∣∣∣∣∣∣∣∣∣∣∣∣ 6 α2N

bN/2c!
Comme CardQ(N) 6 N2, on obtient finalement

|||ANBN − CN ||| 6
N2α2N

bN/2c!
.

En particulier,

|||A2NB2N − C2N ||| 6
(2N)2(α4)N

N !
= 22(α4)2

N2

N(N − 1)

(α4)N−2

(N − 2)!
−→
N→∞

0.

En effet (α4)`/`! est le terme général de la série définissant exp(α4), donc tend vers zéro
quand `→∞. Maintenant, on remarque que A2NB2N → exp(A) exp(B) et C2N → exp(C)
quand N →∞, donc on obtient bien le résultat voulu.

5. En déduire que pour A ∈ Mn(K), la matrice expA est inversible et calculer son inverse.

Solution. Comme A et −A commutent, on a par la question précédente

eAe−A = e−AeA = eA−A = e0 = In.

Ainsi eA est inversible d’inverse e−A.

6. Montrer que pour si A ∈ Mn(K) et P ∈ GLn(K) alors

exp(P−1AP ) = P−1 exp(A)P.

Solution. Soit A ∈ Mn(K). On considère la suite (AN ) de la question 3., ainsi la suite

(BN ) obtenue en remplaçant A par P−1AP . On a

BN =

N∑
`=0

(P−1AP )`

`!
=

N∑
`=0

P−1A`P

`!
= P−1

(
N∑
`=0

A`

`!

)
P = P−1ANP.

L’application A 7→ P−1AP est continue Mn(K)→ Mn(K), on obtient en faisant tendre N
vers +∞,

exp(P−1AP ) = lim
N
BN = lim

N
P−1ANP = P−1 exp(A)P.

7. Montrer que pour toute A ∈ Mn(K) on a

det expA = exp trA.

Indication. On pourra le montrer pour les matrices complexes triangulaires supérieures et
en déduire le cas général.

Solution. Soit T ∈ Mn(C) une matrice triangulaire supérieure. On note λ1, . . . , λn ses coef-
ficients diagonaux. Une récurrence immédiate donne que pour tout ` ∈ N, la matrice T `/`!
est triangulaire supérieure et ses coefficients diagonaux sont donnés par λ`1/`!, . . . , λ

`
n/`!.

Puisque que pour tout j = 1, . . . , n on a

expλj =

∞∑
`=0

λ`j
`!

on obtient que expT est triangulaire supérieure et que ses coefficients diagonaux sont
donnés par expλ1, . . . , expλn. Il suit que

det expT =
n∏
j=1

expλj = exp

n∑
j=1

λj = exp trT.
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Soit maintenant A ∈ Mn(K) quelconque. On a K ⊂ C et le polynôme caractéristique de A
est scindé sur C. Par suite A est trigonalisable sur le corps C, et il existe P ∈ GLn(C) telle
que T = P−1AP soit triangulaire supérieure. Par ce qui précède on a det expT = exp trT .
Comme A et T sont semblables, on a aussi trT = trA. D’autre part expA et expT sont
aussi semblables par la question 6., donc det expA = det expT . Finalement

det expA = det expT = exp trT = exp trA.

On dit qu’une application R → Mn(K), t 7→ A(t) est de classe C 1 si pour tous 1 6 i, j 6 n, le
coefficient A(t)ij en place (i, j) de A(t) dépend de manière C 1 de t.

8. Soit A ∈ Mn(K). Montrer que l’application

R→ Mn(K), t 7→ exp(tA)

est de classe C 1 et qu’on a
d

dt
exp(tA) = A exp(tA).

Solution. Soient 1 6 i, j 6 n. On veut montrer que la fonction f : R → K est C 1 sur R,
où f(t) est le coefficient en place (i, j) de etA pour tout t ∈ R. On a

f(t) =
∞∑
`=0

f`(t) où f`(t) =

(
(tA)`

)
ij

`!
=

(A`)ij
`!

t`, ` > 0.

Méthode 1 (dérivation terme à terme). On applique le théorème de dérivation sous le
signe somme, et pour cela on va montrer que pour tout intervalle borné du type Ir = [−r, r]
avec r > 0, on a ∑

`

‖f`‖∞,Ir <∞ et
∑
`

‖f ′`‖∞,Ir <∞ (3)

où pour toute fonction g continue sur R on a noté ‖g‖∞,Ir = supIr |g|. On veut donc
majorer les fonctions |f`| et |f ′`| uniformément sur Ir.
Notons que pour toute matrice B = (bij) ∈ Mn(K), on a |bij | 6 |||B|||. En effet, si
ej ∈ Mn,1(K) est le vecteur colonne dont toutes les entrées sont nulles sauf la je qui vaut
1, le vecteur Bej est la je colonne de B. Ainsi

|bij | 6 ‖Bej‖ 6 |||B||| · ‖ej‖ = |||B|||.

On obtient donc pour tout ` ∈ N

|(A`)ij | 6
∣∣∣∣∣∣∣∣∣A`∣∣∣∣∣∣∣∣∣ 6 |||A|||`.

Fixons r > 0. On a pour tout ` ∈ N

|f`(t)| =
∣∣∣∣(A`)ij`!

t`
∣∣∣∣ 6 |||A|||``!

|t|` 6 (r|||A|||)`

`!
, |t| 6 r. (4)

Les fonctions f` sont toutes de classe C 1 (car polynomiales). On a f ′0 = 0 et pour tout
` > 1,

|f ′`(t)| =

∣∣∣∣ (A`)ij
(`− 1)!

t`−1
∣∣∣∣ 6 |||A|||(r|||A|||)`−1(`− 1)!

, |t| 6 r. (5)

Comme la série de terme général (r|||A|||)`/`! converge, on en déduit (3). Le théorème de
dérivation sous le signe somme s’applique et f est de classe C 1 sur [−r, r] et f ′ cöıncide
avec la fonction somme

∑
`>0 f

′
`. Ceci étant vrai pour tout r > 0, on obtient que f est de

classe C 1 sur R avec

f ′(t) =
∞∑
`=0

f ′`(t) =
∞∑
`=0

(A`+1)ij
`!

t`. (6)
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Méthode 2 (avec les séries entières). On voit que f(t) =
∑

`>0 α`t
` est la fonction somme

de la série entière dont le terme général est α` = (A`)ij/`!. Comme dans la méthode 1, on
a |α`|r` 6 (r|||A|||)`/`!, donc la suite (α`r

`) est bornée pour tout r > 0. Il suit que la série
entière

∑
` α`t

` a un rayon de convergence infini, donc f est C∞ sur R et la relation (6)
est satisfaite.

Soit AN (t) =
∑N

`=0(tA)`/`!. Le coefficient en place (i, j) de AAN (t) est donné par

(AAN )ij =
N∑
`=0

(A`+1)ijt
`

`!
.

En faisant N →∞ on obtient que le coefficient en place (i, j) de A exp(tA) est donné par
f ′(t) = d

dt

(
etA
)
ij

. Comme c’est vrai pour tout (i, j), on obtient le résultat voulu.

9. Montrer que pour tous A ∈ Mn(K) et X0 ∈ Mn,1(K), le système{
X ′(t) = AX(t)
X(0) = X0

admet une unique solution X ∈ C 1(R,Mn,1(K)) qui est donnée par

X(t) = exp(tA)X0, t ∈ R.

Solution. La question précédente donne immédiatement que l’application t 7→ exp(tA)X0

est solution du système. Nous allons montrer que c’est la seule. Déjà, on remarque que
puisque AAN (t) = AN (t)A (où AN (t) est définie dans la question précédente), on a

A exp(tA) = exp(tA)A

pour tout t ∈ R. On se donne X : t 7→ X(t) une solution du système et on pose

X̃(t) = e−tAX(t).

Puisque d
dt(exp(−tA)) = −A exp(−tA) = − exp(−tA)A, on obtient

d

dt
X̃(t) =

(
d

dt
e−tA

)
X(t) + e−tAX ′(t) =

(
−e−tAA

)
X(t) + e−tAAX(t) = 0. (7)

Ainsi t 7→ X̃(t) est constante et X̃(t) = X̃(0) = X0 pour tout t ∈ R. On multipliant par
etA on obtient, par la question 5.,

X(t) = etAX̃(t) = etAX0,

donc t 7→ etAX0 est l’unique solution du système.

Remarque. Pour obtenir (7), on a utilisé le fait suivant : si A(t) et B(t) sont des matrices
de tailles respectives m × n et n × p, qui dépendent de manière C 1 de t, alors le produit
C(t) = A(t)B(t) est aussi C 1 en t et

C ′(t) = A′(t)B(t) +A(t)B′(t). (8)

En effet, soient 1 6 i 6 m et 1 6 j 6 p. Le coefficient en place (i, j) de C(t) est donné par

C(t)ij =

n∑
k=1

A(t)ikB(t)kj .

Comme les coefficients de A(t) et B(t) sont de classe C 1, on obtient que t 7→ C(t)ij est
aussi de classe C 1 avec

d

dt
C(t)ij =

n∑
k=1

A′(t)ikB(t)kj +

n∑
k=1

A(t)ikB
′(t)kj = (A′(t)B(t) +A(t)B′(t))ij .

Ceci est exactement l’équation (8).
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III — Méthode pour calculer l’exponentielle d’une matrice

10. Montrer que si A = diag(λ1, . . . , λn) est une matrice diagonale, avec λj ∈ K pour tout
j = 1, . . . , n, alors

expA = diag(eλ1 , . . . , eλn).

Solution. Pour tout ` on a A`/`! = diag(λ`1/`!, . . . , λ
`
n/`!). On en déduit immédiatement le

résultat.

11. Soit Qn =
n∑
`=0

X`

`!
∈ K[X]. Montrer que pour toute matrice nilpotente N ∈ Mn(K) on a

expN = Qn(N).

Solution. En effet, soit N nilpotente, donc il existe p tel que Np = 0. Comme N est de
taille n, on a vu en cours que Nn = 0. Démontrons le rapidement. Le polynôme minimal
µN de N divise Xp, donc µN = Xq avec q 6 n puisqu’il est de degré au plus n. Ainsi
Nn = Nn−qN q = 0. On obtient alors N ` = 0 pour tout ` > n. Ainsi, on obtient

expN =
∞∑
`=0

N `

`!
=

n∑
`=0

N `

`!
= Qn(N).

Remarque. En fait on a même Qn−1(N) = expN puisque Nn = 0.

12. Soit A ∈ Mn(K) telle que son polynôme caractéristique χA soit scindé. Montrer qu’il existe
une matrice diagonale ∆, une matrice nilpotente N et une matrice inversible P ∈ GLn(K)
telles que

exp(tA) = P−1 exp(t∆)P Qn(tN), t ∈ R.

Indication. On pourra utiliser la décomposition de Dunford A = D + N de A et écrire
D = P−1∆P avec ∆ diagonale.

Solution. Soit t ∈ R. Le polynôme caractéristique de A étant scindé, A admet une décomposition
de Dunford, que l’on note A = D+N . La matrice D est diagonalisable, N est nilpotente,
et DN = ND. Comme D et N commutent, on a par la question 4.,

exp(tA) = exp(t(D +N)) = exp(tD) exp(tN).

La matrice D est diagonalisable donc il existe une matrice diagonale ∆ et P ∈ GLn(K)
telles que D = P−1∆P . Par la question 6. on obtient exp(tD) = P−1 exp(t∆)P . Enfin
comme tN est nilpotente on a exp(tN) = Qn(tN) par la question précédente, et on obtient
bien

exp(tA) = P−1 exp(t∆)PQn(tN), t ∈ R.

IV — Application

13. Soit (a, b, c) ∈ R3. En utilisant les questions 9 et 12, déterminer les solutions x(t), y(t) et
z(t) au système

x′(t) = x(t)− y(t), y′(t) = x(t)− z(t), z′(t) = −x(t) + 2z(t), t ∈ R,

avec x(0) = a, y(0) = b et z(0) = c.

Solution. Soit X0 = t(a, b, c) ∈ M3,1(R). On cherche les solutions

t 7→ X(t) = t
(
x(t), y(t), z(t)

)
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au système linéaire

{
X ′(t) = AX(t)
X(0) = X0.

où A =

 1 −1 0
1 0 −1
−1 0 2

 ∈ M3(R).

On calcule χA(X) = (1 −X)3. Ainsi χA est scindé sur R et sa seule valeur propre de A
est 1. Soit A = D+N la décomposition de Dunford de A. La matrice D est diagonalisable
et n’a que 1 comme valeur propre ; c’est donc nécessairement la matrice identité, D = I3.
On a donc exp(tD) = exp(tI3) = et I3. D’autre part

N = A−D = A− I3 =

 0 −1 0
1 −1 −1
−1 0 1

 .

On a N2 =

−1 1 1
0 0 0
−1 1 1

 et N3 = 0 (ce qu’on savait déjà par le théorème de Cayley–

Hamilton), de sorte que

Q3(tN) = I3 + tN +
t2N2

2
=

 1− t2/2 −t+ t2/2 t2/2
t 1− t −t

−t− t2/2 t2/2 1 + t+ t2/2


pour tout t ∈ R. Finalement par la question précédente on a

exp(tA) = exp(t)Q3(tN)

et on en déduit que pour tout t ∈ Rx(t)
y(t)
z(t)

 = exp(t)Q3(tN)

ab
c

 .

Ceci donne enfin, pour tout réel t,

x(t) = et
[
a
(
1− t2/2

)
+ b

(
−t+ t2/2

)
+ ct2/2

]
;

y(t) = et
[
at+ b(1− t)− ct

]
;

z(t) = et
[
a
(
−t− t2/2

)
+ bt2/2 + c

(
1 + t+ t2/2

)]
.
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